54 resultados para electric network design
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
En la interacción con el entorno que nos rodea durante nuestra vida diaria (utilizar un cepillo de dientes, abrir puertas, utilizar el teléfono móvil, etc.) y en situaciones profesionales (intervenciones médicas, procesos de producción, etc.), típicamente realizamos manipulaciones avanzadas que incluyen la utilización de los dedos de ambas manos. De esta forma el desarrollo de métodos de interacción háptica multi-dedo dan lugar a interfaces hombre-máquina más naturales y realistas. No obstante, la mayoría de interfaces hápticas disponibles en el mercado están basadas en interacciones con un solo punto de contacto; esto puede ser suficiente para la exploración o palpación del entorno pero no permite la realización de tareas más avanzadas como agarres. En esta tesis, se investiga el diseño mecánico, control y aplicaciones de dispositivos hápticos modulares con capacidad de reflexión de fuerzas en los dedos índice, corazón y pulgar del usuario. El diseño mecánico de la interfaz diseñada, ha sido optimizado con funciones multi-objetivo para conseguir una baja inercia, un amplio espacio de trabajo, alta manipulabilidad y reflexión de fuerzas superiores a 3 N en el espacio de trabajo. El ancho de banda y la rigidez del dispositivo se han evaluado mediante simulación y experimentación real. Una de las áreas más importantes en el diseño de estos dispositivos es el efector final, ya que es la parte que está en contacto con el usuario. Durante este trabajo se ha diseñado un dedal de bajo peso, adaptable a diferentes usuarios que, mediante la incorporación de sensores de contacto, permite estimar fuerzas normales y tangenciales durante la interacción con entornos reales y virtuales. Para el diseño de la arquitectura de control, se estudiaron los principales requisitos para estos dispositivos. Entre estos, cabe destacar la adquisición, procesado e intercambio a través de internet de numerosas señales de control e instrumentación; la computación de equaciones matemáticas incluyendo la cinemática directa e inversa, jacobiana, algoritmos de detección de agarres, etc. Todos estos componentes deben calcularse en tiempo real garantizando una frecuencia mínima de 1 KHz. Además, se describen sistemas para manipulación de precisión virtual y remota; así como el diseño de un método denominado "desacoplo cinemático iterativo" para computar la cinemática inversa de robots y la comparación con otros métodos actuales. Para entender la importancia de la interacción multimodal, se ha llevado a cabo un estudio para comprobar qué estímulos sensoriales se correlacionan con tiempos de respuesta más rápidos y de mayor precisión. Estos experimentos se desarrollaron en colaboración con neurocientíficos del instituto Technion Israel Institute of Technology. Comparando los tiempos de respuesta en la interacción unimodal (auditiva, visual y háptica) con combinaciones bimodales y trimodales de los mismos, se demuestra que el movimiento sincronizado de los dedos para generar respuestas de agarre se basa principalmente en la percepción háptica. La ventaja en el tiempo de procesamiento de los estímulos hápticos, sugiere que los entornos virtuales que incluyen esta componente sensorial generan mejores contingencias motoras y mejoran la credibilidad de los eventos. Se concluye que, los sistemas que incluyen percepción háptica dotan a los usuarios de más tiempo en las etapas cognitivas para rellenar información de forma creativa y formar una experiencia más rica. Una aplicación interesante de los dispositivos hápticos es el diseño de nuevos simuladores que permitan entrenar habilidades manuales en el sector médico. En colaboración con fisioterapeutas de Griffith University en Australia, se desarrolló un simulador que permite realizar ejercicios de rehabilitación de la mano. Las propiedades de rigidez no lineales de la articulación metacarpofalange del dedo índice se estimaron mediante la utilización del efector final diseñado. Estos parámetros, se han implementado en un escenario que simula el comportamiento de la mano humana y que permite la interacción háptica a través de esta interfaz. Las aplicaciones potenciales de este simulador están relacionadas con entrenamiento y educación de estudiantes de fisioterapia. En esta tesis, se han desarrollado nuevos métodos que permiten el control simultáneo de robots y manos robóticas en la interacción con entornos reales. El espacio de trabajo alcanzable por el dispositivo háptico, se extiende mediante el cambio de modo de control automático entre posición y velocidad. Además, estos métodos permiten reconocer el gesto del usuario durante las primeras etapas de aproximación al objeto para su agarre. Mediante experimentos de manipulación avanzada de objetos con un manipulador y diferentes manos robóticas, se muestra que el tiempo en realizar una tarea se reduce y que el sistema permite la realización de la tarea con precisión. Este trabajo, es el resultado de una colaboración con investigadores de Harvard BioRobotics Laboratory. ABSTRACT When we interact with the environment in our daily life (using a toothbrush, opening doors, using cell-phones, etc.), or in professional situations (medical interventions, manufacturing processes, etc.) we typically perform dexterous manipulations that involve multiple fingers and palm for both hands. Therefore, multi-Finger haptic methods can provide a realistic and natural human-machine interface to enhance immersion when interacting with simulated or remote environments. Most commercial devices allow haptic interaction with only one contact point, which may be sufficient for some exploration or palpation tasks but are not enough to perform advanced object manipulations such as grasping. In this thesis, I investigate the mechanical design, control and applications of a modular haptic device that can provide force feedback to the index, thumb and middle fingers of the user. The designed mechanical device is optimized with a multi-objective design function to achieve a low inertia, a large workspace, manipulability, and force-feedback of up to 3 N within the workspace; the bandwidth and rigidity for the device is assessed through simulation and real experimentation. One of the most important areas when designing haptic devices is the end-effector, since it is in contact with the user. In this thesis the design and evaluation of a thimble-like, lightweight, user-adaptable, and cost-effective device that incorporates four contact force sensors is described. This design allows estimation of the forces applied by a user during manipulation of virtual and real objects. The design of a real-time, modular control architecture for multi-finger haptic interaction is described. Requirements for control of multi-finger haptic devices are explored. Moreover, a large number of signals have to be acquired, processed, sent over the network and mathematical computations such as device direct and inverse kinematics, jacobian, grasp detection algorithms, etc. have to be calculated in Real Time to assure the required high fidelity for the haptic interaction. The Hardware control architecture has different modules and consists of an FPGA for the low-level controller and a RT controller for managing all the complex calculations (jacobian, kinematics, etc.); this provides a compact and scalable solution for the required high computation capabilities assuring a correct frequency rate for the control loop of 1 kHz. A set-up for dexterous virtual and real manipulation is described. Moreover, a new algorithm named the iterative kinematic decoupling method was implemented to solve the inverse kinematics of a robotic manipulator. In order to understand the importance of multi-modal interaction including haptics, a subject study was carried out to look for sensory stimuli that correlate with fast response time and enhanced accuracy. This experiment was carried out in collaboration with neuro-scientists from Technion Israel Institute of Technology. By comparing the grasping response times in unimodal (auditory, visual, and haptic) events with the response times in events with bimodal and trimodal combinations. It is concluded that in grasping tasks the synchronized motion of the fingers to generate the grasping response relies on haptic cues. This processing-speed advantage of haptic cues suggests that multimodalhaptic virtual environments are superior in generating motor contingencies, enhancing the plausibility of events. Applications that include haptics provide users with more time at the cognitive stages to fill in missing information creatively and form a richer experience. A major application of haptic devices is the design of new simulators to train manual skills for the medical sector. In collaboration with physical therapists from Griffith University in Australia, we developed a simulator to allow hand rehabilitation manipulations. First, the non-linear stiffness properties of the metacarpophalangeal joint of the index finger were estimated by using the designed end-effector; these parameters are implemented in a scenario that simulates the behavior of the human hand and that allows haptic interaction through the designed haptic device. The potential application of this work is related to educational and medical training purposes. In this thesis, new methods to simultaneously control the position and orientation of a robotic manipulator and the grasp of a robotic hand when interacting with large real environments are studied. The reachable workspace is extended by automatically switching between rate and position control modes. Moreover, the human hand gesture is recognized by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of the approximation-to-the-object phase and then mapped to the robotic hand actuators. These methods are validated to perform dexterous manipulation of objects with a robotic manipulator, and different robotic hands. This work is the result of a research collaboration with researchers from the Harvard BioRobotics Laboratory. The developed experiments show that the overall task time is reduced and that the developed methods allow for full dexterity and correct completion of dexterous manipulations.
Resumo:
Esta tesis está incluida dentro del campo del campo de Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB), el cual ha adquirido una gran importancia en las comunicaciones inalámbricas de alta tasa de datos en la última década. UWB surgió con el objetivo de satisfacer la creciente demanda de conexiones inalámbricas en interiores y de uso doméstico, con bajo coste y alta velocidad. La disponibilidad de un ancho de banda grande, el potencial para alta velocidad de transmisión, baja complejidad y bajo consumo de energía, unido al bajo coste de implementación, representa una oportunidad única para que UWB se convierta en una solución ampliamente utilizada en aplicaciones de Wireless Personal Area Network (WPAN). UWB está definido como cualquier transmisión que ocupa un ancho de banda de más de 20% de su frecuencia central, o más de 500 MHz. En 2002, la Comisión Federal de Comunicaciones (FCC) definió que el rango de frecuencias de transmisión de UWB legal es de 3.1 a 10.6 GHz, con una energía de transmisión de -41.3 dBm/Hz. Bajo las directrices de FCC, el uso de la tecnología UWB puede aportar una enorme capacidad en las comunicaciones de corto alcance. Considerando las ecuaciones de capacidad de Shannon, incrementar la capacidad del canal requiere un incremento lineal en el ancho de banda, mientras que un aumento similar de la capacidad de canal requiere un aumento exponencial en la energía de transmisión. En los últimos años, s diferentes desarrollos del UWB han sido extensamente estudiados en diferentes áreas, entre los cuales, el protocolo de comunicaciones inalámbricas MB-OFDM UWB está considerado como la mejor elección y ha sido adoptado como estándar ISO/IEC para los WPANs. Combinando la modulación OFDM y la transmisión de datos utilizando las técnicas de salto de frecuencia, el sistema MB-OFDM UWB es capaz de soportar tasas de datos con que pueden variar de los 55 a los 480 Mbps, alcanzando una distancia máxima de hasta 10 metros. Se esperara que la tecnología MB-OFDM tenga un consumo energético muy bajo copando un are muy reducida en silicio, proporcionando soluciones de bajo coste que satisfagan las demandas del mercado. Para cumplir con todas estas expectativas, el desarrollo y la investigación del MBOFDM UWB deben enfrentarse a varios retos, como son la sincronización de alta sensibilidad, las restricciones de baja complejidad, las estrictas limitaciones energéticas, la escalabilidad y la flexibilidad. Tales retos requieren un procesamiento digital de la señal de última generación, capaz de desarrollar sistemas que puedan aprovechar por completo las ventajas del espectro UWB y proporcionar futuras aplicaciones inalámbricas en interiores. Esta tesis se centra en la completa optimización de un sistema de transceptor de banda base MB-OFDM UWB digital, cuyo objetivo es investigar y diseñar un subsistema de comunicación inalámbrica para la aplicación de las Redes de Sensores Inalámbricas Visuales. La complejidad inherente de los procesadores FFT/IFFT y el sistema de sincronización así como la alta frecuencia de operación para todos los elementos de procesamiento, se convierten en el cuello de la botella para el diseño y la implementación del sistema de UWB digital en base de banda basado en MB-OFDM de baja energía. El objetivo del transceptor propuesto es conseguir baja energía y baja complejidad bajo la premisa de un alto rendimiento. Las optimizaciones están realizadas tanto a nivel algorítmico como a nivel arquitectural para todos los elementos del sistema. Una arquitectura hardware eficiente en consumo se propone en primer lugar para aquellos módulos correspondientes a núcleos de computación. Para el procesado de la Transformada Rápida de Fourier (FFT/IFFT), se propone un algoritmo mixed-radix, basado en una arquitectura con pipeline y se ha desarrollado un módulo de Decodificador de Viterbi (VD) equilibrado en coste-velocidad con el objetivo de reducir el consumo energético e incrementar la velocidad de procesamiento. También se ha implementado un correlador signo-bit simple basado en la sincronización del tiempo de símbolo es presentado. Este correlador es usado para detectar y sincronizar los paquetes de OFDM de forma robusta y precisa. Para el desarrollo de los subsitemas de procesamiento y realizar la integración del sistema completo se han empleado tecnologías de última generación. El dispositivo utilizado para el sistema propuesto es una FPGA Virtex 5 XC5VLX110T del fabricante Xilinx. La validación el propuesta para el sistema transceptor se ha implementado en dicha placa de FPGA. En este trabajo se presenta un algoritmo, y una arquitectura, diseñado con filosofía de co-diseño hardware/software para el desarrollo de sistemas de FPGA complejos. El objetivo principal de la estrategia propuesta es de encontrar una metodología eficiente para el diseño de un sistema de FPGA configurable optimizado con el empleo del mínimo esfuerzo posible en el sistema de procedimiento de verificación, por tanto acelerar el periodo de desarrollo del sistema. La metodología de co-diseño presentada tiene la ventaja de ser fácil de usar, contiene todos los pasos desde la propuesta del algoritmo hasta la verificación del hardware, y puede ser ampliamente extendida para casi todos los tipos de desarrollos de FPGAs. En este trabajo se ha desarrollado sólo el sistema de transceptor digital de banda base por lo que la comprobación de señales transmitidas a través del canal inalámbrico en los entornos reales de comunicación sigue requiriendo componentes RF y un front-end analógico. No obstante, utilizando la metodología de co-simulación hardware/software citada anteriormente, es posible comunicar el sistema de transmisor y el receptor digital utilizando los modelos de canales propuestos por IEEE 802.15.3a, implementados en MATLAB. Por tanto, simplemente ajustando las características de cada modelo de canal, por ejemplo, un incremento del retraso y de la frecuencia central, podemos estimar el comportamiento del sistema propuesto en diferentes escenarios y entornos. Las mayores contribuciones de esta tesis son: • Se ha propuesto un nuevo algoritmo 128-puntos base mixto FFT usando la arquitectura pipeline multi-ruta. Los complejos multiplicadores para cada etapa de procesamiento son diseñados usando la arquitectura modificada shiftadd. Los sistemas word length y twiddle word length son comparados y seleccionados basándose en la señal para cuantización del SQNR y el análisis de energías. • El desempeño del procesador IFFT es analizado bajo diferentes situaciones aritméticas de bloques de punto flotante (BFP) para el control de desbordamiento, por tanto, para encontrar la arquitectura perfecta del algoritmo IFFT basado en el procesador FFT propuesto. • Para el sistema de receptor MB-OFDM UWB se ha empleado una sincronización del tiempo innovadora, de baja complejidad y esquema de compensación, que consiste en funciones de Detector de Paquetes (PD) y Estimación del Offset del tiempo. Simplificando el cross-correlation y maximizar las funciones probables solo a sign-bit, la complejidad computacional se ve reducida significativamente. • Se ha propuesto un sistema de decodificadores Viterbi de 64 estados de decisión-débil usando velocidad base-4 de arquitectura suma-comparaselecciona. El algoritmo Two-pointer Even también es introducido en la unidad de rastreador de origen con el objetivo de conseguir la eficiencia en el hardware. • Se han integrado varias tecnologías de última generación en el completo sistema transceptor basebanda , con el objetivo de implementar un sistema de comunicación UWB altamente optimizado. • Un diseño de flujo mejorado es propuesto para el complejo sistema de implementación, el cual puede ser usado para diseños de Cadena de puertas de campo programable general (FPGA). El diseño mencionado no sólo reduce dramáticamente el tiempo para la verificación funcional, sino también provee un análisis automático como los errores del retraso del output para el sistema de hardware implementado. • Un ambiente de comunicación virtual es establecido para la validación del propuesto sistema de transceptores MB-OFDM. Este método es provisto para facilitar el uso y la conveniencia de analizar el sistema digital de basebanda sin parte frontera analógica bajo diferentes ambientes de comunicación. Esta tesis doctoral está organizada en seis capítulos. En el primer capítulo se encuentra una breve introducción al campo del UWB, tanto relacionado con el proyecto como la motivación del desarrollo del sistema de MB-OFDM. En el capítulo 2, se presenta la información general y los requisitos del protocolo de comunicación inalámbrica MBOFDM UWB. En el capítulo 3 se habla de la arquitectura del sistema de transceptor digital MB-OFDM de banda base . El diseño del algoritmo propuesto y la arquitectura para cada elemento del procesamiento está detallado en este capítulo. Los retos de diseño del sistema que involucra un compromiso de discusión entre la complejidad de diseño, el consumo de energía, el coste de hardware, el desempeño del sistema, y otros aspectos. En el capítulo 4, se ha descrito la co-diseñada metodología de hardware/software. Cada parte del flujo del diseño será detallado con algunos ejemplos que se ha hecho durante el desarrollo del sistema. Aprovechando esta estrategia de diseño, el procedimiento de comunicación virtual es llevado a cabo para probar y analizar la arquitectura del transceptor propuesto. Los resultados experimentales de la co-simulación y el informe sintético de la implementación del sistema FPGA son reflejados en el capítulo 5. Finalmente, en el capítulo 6 se incluye las conclusiones y los futuros proyectos, y también los resultados derivados de este proyecto de doctorado. ABSTRACT In recent years, the Wireless Visual Sensor Network (WVSN) has drawn great interest in wireless communication research area. They enable a wealth of new applications such as building security control, image sensing, and target localization. However, nowadays wireless communication protocols (ZigBee, Wi-Fi, and Bluetooth for example) cannot fully satisfy the demands of high data rate, low power consumption, short range, and high robustness requirements. New communication protocol is highly desired for such kind of applications. The Ultra Wideband (UWB) wireless communication protocol, which has increased in importance for high data rate wireless communication field, are emerging as an important topic for WVSN research. UWB has emerged as a technology that offers great promise to satisfy the growing demand for low-cost, high-speed digital wireless indoor and home networks. The large bandwidth available, the potential for high data rate transmission, and the potential for low complexity and low power consumption, along with low implementation cost, all present a unique opportunity for UWB to become a widely adopted radio solution for future Wireless Personal Area Network (WPAN) applications. UWB is defined as any transmission that occupies a bandwidth of more than 20% of its center frequency, or more than 500 MHz. In 2002, the Federal Communications Commission (FCC) has mandated that UWB radio transmission can legally operate in the range from 3.1 to 10.6 GHz at a transmitter power of -41.3 dBm/Hz. Under the FCC guidelines, the use of UWB technology can provide enormous capacity over short communication ranges. Considering Shannon’s capacity equations, increasing the channel capacity requires linear increasing in bandwidth, whereas similar channel capacity increases would require exponential increases in transmission power. In recent years, several different UWB developments has been widely studied in different area, among which, the MB-OFDM UWB wireless communication protocol is considered to be the leading choice and has recently been adopted in the ISO/IEC standard for WPANs. By combing the OFDM modulation and data transmission using frequency hopping techniques, the MB-OFDM UWB system is able to support various data rates, ranging from 55 to 480 Mbps, over distances up to 10 meters. The MB-OFDM technology is expected to consume very little power and silicon area, as well as provide low-cost solutions that can satisfy consumer market demands. To fulfill these expectations, MB-OFDM UWB research and development have to cope with several challenges, which consist of high-sensitivity synchronization, low- complexity constraints, strict power limitations, scalability, and flexibility. Such challenges require state-of-the-art digital signal processing expertise to develop systems that could fully take advantages of the UWB spectrum and support future indoor wireless applications. This thesis focuses on fully optimization for the MB-OFDM UWB digital baseband transceiver system, aiming at researching and designing a wireless communication subsystem for the Wireless Visual Sensor Networks (WVSNs) application. The inherent high complexity of the FFT/IFFT processor and synchronization system, and high operation frequency for all processing elements, becomes the bottleneck for low power MB-OFDM based UWB digital baseband system hardware design and implementation. The proposed transceiver system targets low power and low complexity under the premise of high performance. Optimizations are made at both algorithm and architecture level for each element of the transceiver system. The low-power hardwareefficient structures are firstly proposed for those core computation modules, i.e., the mixed-radix algorithm based pipelined architecture is proposed for the Fast Fourier Transform (FFT/IFFT) processor, and the cost-speed balanced Viterbi Decoder (VD) module is developed, in the aim of lowering the power consumption and increasing the processing speed. In addition, a low complexity sign-bit correlation based symbol timing synchronization scheme is presented so as to detect and synchronize the OFDM packets robustly and accurately. Moreover, several state-of-the-art technologies are used for developing other processing subsystems and an entire MB-OFDM digital baseband transceiver system is integrated. The target device for the proposed transceiver system is Xilinx Virtex 5 XC5VLX110T FPGA board. In order to validate the proposed transceiver system in the FPGA board, a unified algorithm-architecture-circuit hardware/software co-design environment for complex FPGA system development is presented in this work. The main objective of the proposed strategy is to find an efficient methodology for designing a configurable optimized FPGA system by using as few efforts as possible in system verification procedure, so as to speed up the system development period. The presented co-design methodology has the advantages of easy to use, covering all steps from algorithm proposal to hardware verification, and widely spread for almost all kinds of FPGA developments. Because only the digital baseband transceiver system is developed in this thesis, the validation of transmitting signals through wireless channel in real communication environments still requires the analog front-end and RF components. However, by using the aforementioned hardware/software co-simulation methodology, the transmitter and receiver digital baseband systems get the opportunity to communicate with each other through the channel models, which are proposed from the IEEE 802.15.3a research group, established in MATLAB. Thus, by simply adjust the characteristics of each channel model, e.g. mean excess delay and center frequency, we can estimate the transmission performance of the proposed transceiver system through different communication situations. The main contributions of this thesis are: • A novel mixed radix 128-point FFT algorithm by using multipath pipelined architecture is proposed. The complex multipliers for each processing stage are designed by using modified shift-add architectures. The system wordlength and twiddle word-length are compared and selected based on Signal to Quantization Noise Ratio (SQNR) and power analysis. • IFFT processor performance is analyzed under different Block Floating Point (BFP) arithmetic situations for overflow control, so as to find out the perfect architecture of IFFT algorithm based on the proposed FFT processor. • An innovative low complex timing synchronization and compensation scheme, which consists of Packet Detector (PD) and Timing Offset Estimation (TOE) functions, for MB-OFDM UWB receiver system is employed. By simplifying the cross-correlation and maximum likelihood functions to signbit only, the computational complexity is significantly reduced. • A 64 state soft-decision Viterbi Decoder system by using high speed radix-4 Add-Compare-Select architecture is proposed. Two-pointer Even algorithm is also introduced into the Trace Back unit in the aim of hardware-efficiency. • Several state-of-the-art technologies are integrated into the complete baseband transceiver system, in the aim of implementing a highly-optimized UWB communication system. • An improved design flow is proposed for complex system implementation which can be used for general Field-Programmable Gate Array (FPGA) designs. The design method not only dramatically reduces the time for functional verification, but also provides automatic analysis such as errors and output delays for the implemented hardware systems. • A virtual communication environment is established for validating the proposed MB-OFDM transceiver system. This methodology is proved to be easy for usage and convenient for analyzing the digital baseband system without analog frontend under different communication environments. This PhD thesis is organized in six chapters. In the chapter 1 a brief introduction to the UWB field, as well as the related work, is done, along with the motivation of MBOFDM system development. In the chapter 2, the general information and requirement of MB-OFDM UWB wireless communication protocol is presented. In the chapter 3, the architecture of the MB-OFDM digital baseband transceiver system is presented. The design of the proposed algorithm and architecture for each processing element is detailed in this chapter. Design challenges of such system involve trade-off discussions among design complexity, power consumption, hardware cost, system performance, and some other aspects. All these factors are analyzed and discussed. In the chapter 4, the hardware/software co-design methodology is proposed. Each step of this design flow will be detailed by taking some examples that we met during system development. Then, taking advantages of this design strategy, the Virtual Communication procedure is carried out so as to test and analyze the proposed transceiver architecture. Experimental results from the co-simulation and synthesis report of the implemented FPGA system are given in the chapter 5. The chapter 6 includes conclusions and future work, as well as the results derived from this PhD work.
Resumo:
Desde la aparición del turborreactor, el motor aeróbico con turbomaquinaria ha demostrado unas prestaciones excepcionales en los regímenes subsónico y supersónico bajo. No obstante, la operación a velocidades superiores requiere sistemas más complejos y pesados, lo cual ha imposibilitado la ejecución de estos conceptos. Los recientes avances tecnológicos, especialmente en materiales ligeros, han restablecido el interés por los motores de ciclo combinado. La simulación numérica de estos nuevos conceptos es esencial para estimar las prestaciones de la planta propulsiva, así como para abordar las dificultades de integración entre célula y motor durante las primeras etapas de diseño. Al mismo tiempo, la evaluación de estos extraordinarios motores requiere una metodología de análisis distinta. La tesis doctoral versa sobre el diseño y el análisis de los mencionados conceptos propulsivos mediante el modelado numérico y la simulación dinámica con herramientas de vanguardia. Las distintas arquitecturas presentadas por los ciclos combinados basados en sendos turborreactor y motor cohete, así como los diversos sistemas comprendidos en cada uno de ellos, hacen necesario establecer una referencia común para su evaluación. Es más, la tendencia actual hacia aeronaves "más eléctricas" requiere una nueva métrica para juzgar la aptitud de un proceso de generación de empuje en el que coexisten diversas formas de energía. A este respecto, la combinación del Primer y Segundo Principios define, en un marco de referencia absoluto, la calidad de la trasferencia de energía entre los diferentes sistemas. Esta idea, que se ha estado empleando desde hace mucho tiempo en el análisis de plantas de potencia terrestres, ha sido extendida para relacionar la misión de la aeronave con la ineficiencia de cada proceso involucrado en la generación de empuje. La metodología se ilustra mediante el estudio del motor de ciclo combinado variable de una aeronave para el crucero a Mach 5. El diseño de un acelerador de ciclo combinado basado en el turborreactor sirve para subrayar la importancia de la integración del motor y la célula. El diseño está limitado por la trayectoria ascensional y el espacio disponible en la aeronave de crucero supersónico. Posteriormente se calculan las prestaciones instaladas de la planta propulsiva en función de la velocidad y la altitud de vuelo y los parámetros de control del motor: relación de compresión, relación aire/combustible y área de garganta. ABSTRACT Since the advent of the turbojet, the air-breathing engine with rotating machinery has demonstrated exceptional performance in the subsonic and low supersonic regimes. However, the operation at higher speeds requires further system complexity and weight, which so far has impeded the realization of these concepts. Recent technology developments, especially in lightweight materials, have restored the interest towards combined-cycle engines. The numerical simulation of these new concepts is essential at the early design stages to compute a first estimate of the engine performance in addition to addressing airframe-engine integration issues. In parallel, a different analysis methodology is required to evaluate these unconventional engines. The doctoral thesis concerns the design and analysis of the aforementioned engine concepts by means of numerical modeling and dynamic simulation with state-of-the-art tools. A common reference is needed to evaluate the different architectures of the turbine and the rocket-based combined-cycle engines as well as the various systems within each one of them. Furthermore, the actual trend towards more electric aircraft necessitates a common metric to judge the suitability of a thrust generation process where different forms of energy coexist. In line with this, the combination of the First and the Second Laws yields the quality of the energy being transferred between the systems on an absolute reference frame. This idea, which has been since long applied to the analysis of on-ground power plants, was extended here to relate the aircraft mission with the inefficiency of every process related to the thrust generation. The methodology is illustrated with the study of a variable- combined-cycle engine for a Mach 5 cruise aircraft. The design of a turbine-based combined-cycle booster serves to highlight the importance of the engine-airframe integration. The design is constrained by the ascent trajectory and the allocated space in the supersonic cruise aircraft. The installed performance of the propulsive plant is then computed as a function of the flight speed and altitude and the engine control parameters: pressure ratio, air-to-fuel ratio and throat area.
Resumo:
In hybrid and electric vehicles, passengers sit very close to an electric system of significant power, which means that they may be subjected to high electromagnetic fields. The hazards of long-term exposure to these fields must be taken into account when designing electric vehicles and their components. Among all the electric devices present in the power train, the electronic converter is the most difficult to analyze, given that it works with different frequencies. In this paper, a methodology to evaluate the magnetic field created by a power electronics converter is proposed. After a brief overview of the recommendations of electromagnetic fields exposure, the magnetic field produced by an inverter is analyzed using finite element techniques. The results obtained are compared to laboratory measurements, taken from a real inverter, in order to validate the model. Finally, results are used to draw some conclusions regarding vehicle design criteria and magnetic shielding efficiency.
Resumo:
Purpose – The purpose of this paper is to present a simulation‐based evaluation method for the comparison of different organizational forms and software support levels in the field of supply chain management (SCM). Design/methodology/approach – Apart from widely known logistic performance indicators, the discrete event simulation model considers explicitly coordination cost as stemming from iterative administration procedures. Findings - The method is applied to an exemplary supply chain configuration considering various parameter settings. Curiously, additional coordination cost does not always result in improved logistic performance. Influence factor variations lead to different organizational recommendations. The results confirm the high importance of (up to now) disregarded dimensions when evaluating SCM concepts and IT tools. Research limitations/implications – The model is based on simplified product and network structures. Future research shall include more complex, real world configurations. Practical implications – The developed method is designed for the identification of improvement potential when SCM software is employed. Coordination schemes based only on ERP systems are valid alternatives in industrial practice because significant investment IT can be avoided. Therefore, the evaluation of these coordination procedures, in particular the cost due to iterations, is of high managerial interest and the method provides a comprehensive tool for strategic IT decision making. Originality/value – Reviewed literature is mostly focused on the benefits of SCM software implementations. However, ERP system based supply chain coordination is still widespread industrial practice but associated coordination cost has not been addressed by researchers.
Resumo:
Environmental monitoring has become a key aspect in food production over the last few years. Due to their low cost, low power consumption and flexibility, Wireless Sensor Networks (WSNs) have turned up as a very convenient tool to be used in these environments where no intrusion is a must. In this work, a WSN application in a food factory is presented. The paper gives an overview of the system set up, covering from the initial study of the parameters and sensors, to the hardware-software design and development needed for the final tests in the factory facilities.
Resumo:
Within the technological framework of Information and Communication Technologies (ICT), consumers are currently requesting multimedia services with simplicity of use, reliability, security and service availability through mobile and fixed access. Network operators are proposing the Next Generation Networks (NGN) to address the challenges of providing both services and network convergence. Apart from these considerations, there is a need to provide social and healthcare assistance services in order to support the progressive aging in the elderly population. In order to achieve this objective, the Ambient Assisted Living (AAL) initiative proposes ICT systems and services to promote autonomy and an independent life among the elderly. This paper describes the design and implementation of a group of services, called “service enablers”, which helps AAL applications to be supported in NGN. The presented enablers are identified to support the teleconsulting applications requirements in an NGN environment, involving the implementation of a virtual waiting room, a virtual whiteboard, a multimedia multiconference and a vital-signs monitoring presence status. A use case is defined and implemented to evaluate the developed enablers' performance.
Resumo:
La región del espectro electromagnético comprendida entre 100 GHz y 10 THz alberga una gran variedad de aplicaciones en campos tan dispares como la radioastronomía, espectroscopíamolecular, medicina, seguridad, radar, etc. Los principales inconvenientes en el desarrollo de estas aplicaciones son los altos costes de producción de los sistemas trabajando a estas frecuencias, su costoso mantenimiento, gran volumen y baja fiabilidad. Entre las diferentes tecnologías a frecuencias de THz, la tecnología de los diodos Schottky juega un importante papel debido a su madurez y a la sencillez de estos dispositivos. Además, los diodos Schottky pueden operar tanto a temperatura ambiente como a temperaturas criogénicas, con altas eficiencias cuando se usan como multiplicadores y con moderadas temperaturas de ruido en mezcladores. El principal objetivo de esta tesis doctoral es analizar los fenómenos físicos responsables de las características eléctricas y del ruido en los diodos Schottky, así como analizar y diseñar circuitos multiplicadores y mezcladores en bandas milimétricas y submilimétricas. La primera parte de la tesis presenta un análisis de los fenómenos físicos que limitan el comportamiento de los diodos Schottky de GaAs y GaN y de las características del espectro de ruido de estos dispositivos. Para llevar a cabo este análisis, un modelo del diodo basado en la técnica de Monte Carlo se ha considerado como referencia debido a la elevada precisión y fiabilidad de este modelo. Además, el modelo de Monte Carlo permite calcular directamente el espectro de ruido de los diodos sin necesidad de utilizar ningún modelo analítico o empírico. Se han analizado fenómenos físicos como saturación de la velocidad, inercia de los portadores, dependencia de la movilidad electrónica con la longitud de la epicapa, resonancias del plasma y efectos no locales y no estacionarios. También se ha presentado un completo análisis del espectro de ruido para diodos Schottky de GaAs y GaN operando tanto en condiciones estáticas como variables con el tiempo. Los resultados obtenidos en esta parte de la tesis contribuyen a mejorar la comprensión de la respuesta eléctrica y del ruido de los diodos Schottky en condiciones de altas frecuencias y/o altos campos eléctricos. También, estos resultados han ayudado a determinar las limitaciones de modelos numéricos y analíticos usados en el análisis de la respuesta eléctrica y del ruido electrónico en los diodos Schottky. La segunda parte de la tesis está dedicada al análisis de multiplicadores y mezcladores mediante una herramienta de simulación de circuitos basada en la técnica de balance armónico. Diferentes modelos basados en circuitos equivalentes del dispositivo, en las ecuaciones de arrastre-difusión y en la técnica de Monte Carlo se han considerado en este análisis. El modelo de Monte Carlo acoplado a la técnica de balance armónico se ha usado como referencia para evaluar las limitaciones y el rango de validez de modelos basados en circuitos equivalentes y en las ecuaciones de arrastredifusión para el diseño de circuitos multiplicadores y mezcladores. Una notable característica de esta herramienta de simulación es que permite diseñar circuitos Schottky teniendo en cuenta tanto la respuesta eléctrica como el ruido generado en los dispositivos. Los resultados de las simulaciones presentados en esta parte de la tesis, tanto paramultiplicadores comomezcladores, se han comparado con resultados experimentales publicados en la literatura. El simulador que integra el modelo de Monte Carlo con la técnica de balance armónico permite analizar y diseñar circuitos a frecuencias superiores a 1 THz. ABSTRACT The terahertz region of the electromagnetic spectrum(100 GHz-10 THz) presents a wide range of applications such as radio-astronomy, molecular spectroscopy, medicine, security and radar, among others. The main obstacles for the development of these applications are the high production cost of the systems working at these frequencies, highmaintenance, high volume and low reliability. Among the different THz technologies, Schottky technology plays an important rule due to its maturity and the inherent simplicity of these devices. Besides, Schottky diodes can operate at both room and cryogenic temperatures, with high efficiency in multipliers and moderate noise temperature in mixers. This PhD. thesis is mainly concerned with the analysis of the physical processes responsible for the characteristics of the electrical response and noise of Schottky diodes, as well as the analysis and design of frequency multipliers and mixers at millimeter and submillimeter wavelengths. The first part of the thesis deals with the analysis of the physical phenomena limiting the electrical performance of GaAs and GaN Schottky diodes and their noise performance. To carry out this analysis, a Monte Carlo model of the diode has been used as a reference due to the high accuracy and reliability of this diode model at millimeter and submillimter wavelengths. Besides, the Monte Carlo model provides a direct description of the noise spectra of the devices without the necessity of any additional analytical or empirical model. Physical phenomena like velocity saturation, carrier inertia, dependence of the electron mobility on the epilayer length, plasma resonance and nonlocal effects in time and space have been analysed. Also, a complete analysis of the current noise spectra of GaAs and GaN Schottky diodes operating under static and time varying conditions is presented in this part of the thesis. The obtained results provide a better understanding of the electrical and the noise responses of Schottky diodes under high frequency and/or high electric field conditions. Also these results have helped to determine the limitations of numerical and analytical models used in the analysis of the electrical and the noise responses of these devices. The second part of the thesis is devoted to the analysis of frequency multipliers and mixers by means of an in-house circuit simulation tool based on the harmonic balance technique. Different lumped equivalent circuits, drift-diffusion and Monte Carlo models have been considered in this analysis. The Monte Carlo model coupled to the harmonic balance technique has been used as a reference to evaluate the limitations and range of validity of lumped equivalent circuit and driftdiffusion models for the design of frequency multipliers and mixers. A remarkable feature of this reference simulation tool is that it enables the design of Schottky circuits from both electrical and noise considerations. The simulation results presented in this part of the thesis for both multipliers and mixers have been compared with measured results available in the literature. In addition, the Monte Carlo simulation tool allows the analysis and design of circuits above 1 THz.
Resumo:
The development of this work presents the implementation of an experimental platform, which will permit to investigate on a methodology for the design and analysis of a teleoperated system, considering the delay in the communication channel. The project has been developed in partnership with the laboratory of Automatic and Robotics of the Universidad Politécnica de Madrid and the Laboratory at the Centro de Tecnologías Avanzadas de Manufactura at the Pontificia Universidad Católica del Perú. The mechanical structure of the arm that is located in the remote side has been built and the electric servomechanism has been mounted to control their movement. The experimental test of the Teleoperation system has been developed. The PC104 card commands the power interface and sensors of the DC motor of each articulation of the arm. Has developed the drives for the management of the operations of the master and the slave: send/reception of position, speed, acceleration and current data through a CAN network. The programs for the interconnection through a LAN network, between the Windows Operating System and the Real-time Operating System (QNX), has been developed. The utility of the developed platform (hardware and software) has been demonstrated.
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
We have developed new analytical expressions for designing liquid crystal (LC) microlenses. These equations are based on a novel equivalent electric circuit and can be used to create an optimum design for the LC lenses in which the lens diameter ranges from a few micrometers to several millimeters. Thus far, only experimental studies have been conducted on the LC lenses. The analytical expressions developed in this letter depend on various manufacturing parameters and can be used to design lenses with specific focal lengths and a parabolic phase profile. The required driving scheme (modal or hole-patterned) can be predicted. The LC microlenses were manufactured and electrooptically characterized: the measurements were compared using an analytical approach.
Resumo:
Nowadays, Wireless Ad Hoc Sensor Networks (WAHSNs), specially limited in energy and resources, are subject to development constraints and difficulties such as the increasing RF spectrum saturation at the unlicensed bands. Cognitive Wireless Sensor Networks (CWSNs), leaning on a cooperative communication model, develop new strategies to mitigate the inefficient use of the spectrum that WAHSNs face. However, few and poorly featured platforms allow their study due to their early research stage. This paper presents a versatile platform that brings together cognitive properties into WAHSNs. It combines hardware and software modules as an entire instrument to investigate CWSNs. The hardware fits WAHSN requirements in terms of size, cost, features, and energy. It allows communication over three different RF bands, becoming the only cognitive platform for WAHSNs with this capability. In addition, its modular and scalable design is widely adaptable to almost any WAHSN application. Significant features such as radio interface (RI) agility or energy consumption have been proven throughout different performance tests.
Resumo:
In this paper a novel dual-band single circular polarization antenna feeding network for satellite communications is presented. The novel antenna feed chain1 is composed of two elements or subsystems, namely a diplexer and a bi-phase polarizer. In comparison with the classic topology based on an orthomode transducer and a dual-band polarizer, the proposed feed chain presents several advantages, such as compactness, modular design of the different components, broadband operation and versatility in the subsystems interconnection. The design procedure of this new antenna feed configuration is explained. Different examples of antenna feeding networks at 20/30 GHz are presented. It is pointed out the excellent results obtained in terms of isolation and axial ratio.