38 resultados para Wheatstone bridge
Resumo:
An orthotropic rectangular plate is analysed. The plate has been considered simply supported in two opposite edges and general boundary conditions along the remainder edges. Matrix formulation, very convenient for programming on a digital computer, is used through the text. This technique is applied to an actual bridge deck and the results are compared with those obtained by means of the Guyon-Massonet-Rowe method
Resumo:
A low-cost vibration monitoring system has been developed and installed on an urban steel- plated stress-ribbon footbridge. The system continuously measures: the acceleration (using 18 triaxial MEMS accelerometers distributed along the structure), the ambient temperature and the wind velocity and direction. Automated output-only modal parameter estimation based on the Stochastic Subspace Identification (SSI) is carried out in order to extract the modal parameters, i.e., the natural frequencies, damping ratios and modal shapes. Thus, this paper analyzes the time evolution of the modal parameters over a whole-year data monitoring. Firstly, for similar environmental/operational factors, the uncertainties associated to the time window size used are studied and quantified. Secondly, a methodology to track the vibration modes has been established since several of them with closely-spaced natural frequencies are identified. Thirdly, the modal parameters have been correlated against external factors. It has been shown that this stress-ribbon structure is highly sensitive to temperature variation (frequency changes of more than 20%) with strongly seasonal and daily trends
Resumo:
The San Pedro Bridge has six spans and is 750 m (2460 ft) long, 88 m (290 ft) high, 12 m (39 ft) wide, and curved with a radius of 700 m (2300 ft). It was built in 1993 using the cantilever method. Its super - structure is a prestressed concrete box girder with main spans of 150 m (490 ft). In 2008 and 2009, the width of the platform was enlarged to 23 m (75 ft) using five movable sets of scaffolding. The bridge remained open to traffic during construction. The original platform was widened 6 m (20 ft) on each side by connecting a new lightweight concrete cantilever to the original upper slab. These cantilevers were supported by steelstruts. The tie into the upper slab was made with new transverse post-tensioned tendons. The original superstructure was strengthened to resist the additional dead load of the expansion and live loads of the extra traffic. An additional new central web and a composite concrete-steel section were constructed and connected to the concrete box and central web using vertical high-strength post-tensioning bars. Also, external post-tensioning cables were implemented. It was also necessary to strengthen the connection of the original concrete box section to the piers. Detailed calculations were performed to evaluate the load distribution transmitted to the piers by the webs and by the original inclined concrete walls of the box girder. Finally, a detailed second-order-analysis of the complete structure was made to guarantee the resistance of the piers compared with actual loads
Resumo:
The lower stability limit for axisymmetric floating zones at rest between equal coaxial disks has been experimentally verified for several disk-separation/disk-diameter ratios by using the neutral buoyancy technique. Results show a close agre ment with theory in the case of bridge disruption and a wide scatter in the case of bridge etachment.
Resumo:
Besides space laboratories for in-orbit experimentation, Earth based facilities for laboratory experimentation are of paramount importance for the enhancement on liquid bridge knowledge. In spite of the constraints imposed by simulated microgravity (which force to work either with very small size liquid bridges or by using the Plateau tank technique, amongst other techniques), the availability and accessibility of Earth facilities can circumvent in many cases the drawbacks associated with simulated microgravity conditions. To support theoretical and in orbit experimental studies on liquid bridges under reduced gravity conditions, several ground facilities were developed at IDR. In the following these ground facilities are briefly described, and main results obtained by using them are cited.
Resumo:
Underbridge: relocalización del Gujari Bazaar bajo el Ellis Bridge, Ahmedabad, India
Resumo:
The wavelet transform and Lipschitz exponent perform well in detecting signal singularity.With the bridge crack damage modeled as rotational springs based on fracture mechanics, the deflection time history of the beam under the moving load is determined with a numerical method. The continuous wavelet transformation (CWT) is applied to the deflection of the beam to identify the location of the damage, and the Lipschitz exponent is used to evaluate the damage degree. The influence of different damage degrees,multiple damage, different sensor locations, load velocity and load magnitude are studied.Besides, the feasibility of this method is verified by a model experiment.
Resumo:
Although the primary objective on designing a structure is to support the external loads, the achievement of an optimal layout that reduces all costs associated with the structure is an aspect of increasing interest. The problem of finding the optimal layout for bridgelike structures subjected to a uniform load is considered. The problem is formulated following a theory on economy of frame structures, using the stress volume as the objective function and including the selection of appropriate values for statically indeterminate reactions. It is solved in a function space of finite dimension instead of using a general variational approach, obtaining near-optimal solutions. The results obtained with this profitable strategy are very close to the best layouts known to date, with differences of less than 2% for the stress volume, but with a simpler layout that can be recognized in some real bridges. This strategy could be a guide to preliminary design of bridges subject to a wide class of costs.