44 resultados para Weibull probability distribution function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new Bayesian framework for automatically determining the position (location and orientation) of an uncalibrated camera using the observations of moving objects and a schematic map of the passable areas of the environment. Our approach takes advantage of static and dynamic information on the scene structures through prior probability distributions for object dynamics. The proposed approach restricts plausible positions where the sensor can be located while taking into account the inherent ambiguity of the given setting. The proposed framework samples from the posterior probability distribution for the camera position via data driven MCMC, guided by an initial geometric analysis that restricts the search space. A Kullback-Leibler divergence analysis is then used that yields the final camera position estimate, while explicitly isolating ambiguous settings. The proposed approach is evaluated in synthetic and real environments, showing its satisfactory performance in both ambiguous and unambiguous settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing cover crops (CC) interspersed with intensively fertilized crops in rotation has the potential to reduce nitrate leaching. This paper evaluates various strategies involving CC between maize and compares the economic and environmental results with respect to a typical maize?fallow rotation. The comparison is performed through stochastic (Monte-Carlo) simulation models of farms? profits using probability distribution functions (pdfs) of yield and N fertilizer saving fitted with data collected from various field trials and pdfs of crop prices and the cost of fertilizer fitted from statistical sources. Stochastic dominance relationships are obtained to rank the most profitable strategies from a farm financial perspective. A two-criterion comparison scheme is proposed to rank alternative strategies based on farm profit and nitrate leaching levels, taking the baseline scenario as the maize?fallow rotation. The results show that when CC biomass is sold as forage instead of keeping it in the soil, greater profit and less leaching of nitrates are achieved than in the baseline scenario. While the fertilizer saving will be lower if CC is sold than if it is kept in the soil, the revenue obtained from the sale of the CC compensates for the reduced fertilizer savings. The results show that CC would perhaps provide a double dividend of greater profit and reduced nitrate leaching in intensive irrigated cropping systems in Mediterranean regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction at ungauged sites is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. Regression models relate physiographic and climatic basin characteristics to flood quantiles, which can be estimated from observed data at gauged sites. However, these models assume linear relationships between variables Prediction intervals are estimated by the variance of the residuals in the estimated model. Furthermore, the effect of the uncertainties in the explanatory variables on the dependent variable cannot be assessed. This paper presents a methodology to propagate the uncertainties that arise in the process of predicting flood quantiles at ungauged basins by a regression model. In addition, Bayesian networks were explored as a feasible tool for predicting flood quantiles at ungauged sites. Bayesian networks benefit from taking into account uncertainties thanks to their probabilistic nature. They are able to capture non-linear relationships between variables and they give a probability distribution of discharges as result. The methodology was applied to a case study in the Tagus basin in Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante la actividad diaria, la sociedad actual interactúa constantemente por medio de dispositivos electrónicos y servicios de telecomunicaciones, tales como el teléfono, correo electrónico, transacciones bancarias o redes sociales de Internet. Sin saberlo, masivamente dejamos rastros de nuestra actividad en las bases de datos de empresas proveedoras de servicios. Estas nuevas fuentes de datos tienen las dimensiones necesarias para que se puedan observar patrones de comportamiento humano a grandes escalas. Como resultado, ha surgido una reciente explosión sin precedentes de estudios de sistemas sociales, dirigidos por el análisis de datos y procesos computacionales. En esta tesis desarrollamos métodos computacionales y matemáticos para analizar sistemas sociales por medio del estudio combinado de datos derivados de la actividad humana y la teoría de redes complejas. Nuestro objetivo es caracterizar y entender los sistemas emergentes de interacciones sociales en los nuevos espacios tecnológicos, tales como la red social Twitter y la telefonía móvil. Analizamos los sistemas por medio de la construcción de redes complejas y series temporales, estudiando su estructura, funcionamiento y evolución en el tiempo. También, investigamos la naturaleza de los patrones observados por medio de los mecanismos que rigen las interacciones entre individuos, así como medimos el impacto de eventos críticos en el comportamiento del sistema. Para ello, hemos propuesto modelos que explican las estructuras globales y la dinámica emergente con que fluye la información en el sistema. Para los estudios de la red social Twitter, hemos basado nuestros análisis en conversaciones puntuales, tales como protestas políticas, grandes acontecimientos o procesos electorales. A partir de los mensajes de las conversaciones, identificamos a los usuarios que participan y construimos redes de interacciones entre los mismos. Específicamente, construimos una red para representar quién recibe los mensajes de quién y otra red para representar quién propaga los mensajes de quién. En general, hemos encontrado que estas estructuras tienen propiedades complejas, tales como crecimiento explosivo y distribuciones de grado libres de escala. En base a la topología de estas redes, hemos indentificado tres tipos de usuarios que determinan el flujo de información según su actividad e influencia. Para medir la influencia de los usuarios en las conversaciones, hemos introducido una nueva medida llamada eficiencia de usuario. La eficiencia se define como el número de retransmisiones obtenidas por mensaje enviado, y mide los efectos que tienen los esfuerzos individuales sobre la reacción colectiva. Hemos observado que la distribución de esta propiedad es ubicua en varias conversaciones de Twitter, sin importar sus dimensiones ni contextos. Con lo cual, sugerimos que existe universalidad en la relación entre esfuerzos individuales y reacciones colectivas en Twitter. Para explicar los factores que determinan la emergencia de la distribución de eficiencia, hemos desarrollado un modelo computacional que simula la propagación de mensajes en la red social de Twitter, basado en el mecanismo de cascadas independientes. Este modelo nos permite medir el efecto que tienen sobre la distribución de eficiencia, tanto la topología de la red social subyacente, como la forma en que los usuarios envían mensajes. Los resultados indican que la emergencia de un grupo selecto de usuarios altamente eficientes depende de la heterogeneidad de la red subyacente y no del comportamiento individual. Por otro lado, hemos desarrollado técnicas para inferir el grado de polarización política en redes sociales. Proponemos una metodología para estimar opiniones en redes sociales y medir el grado de polarización en las opiniones obtenidas. Hemos diseñado un modelo donde estudiamos el efecto que tiene la opinión de un pequeño grupo de usuarios influyentes, llamado élite, sobre las opiniones de la mayoría de usuarios. El modelo da como resultado una distribución de opiniones sobre la cual medimos el grado de polarización. Aplicamos nuestra metodología para medir la polarización en redes de difusión de mensajes, durante una conversación en Twitter de una sociedad políticamente polarizada. Los resultados obtenidos presentan una alta correspondencia con los datos offline. Con este estudio, hemos demostrado que la metodología propuesta es capaz de determinar diferentes grados de polarización dependiendo de la estructura de la red. Finalmente, hemos estudiado el comportamiento humano a partir de datos de telefonía móvil. Por una parte, hemos caracterizado el impacto que tienen desastres naturales, como innundaciones, sobre el comportamiento colectivo. Encontramos que los patrones de comunicación se alteran de forma abrupta en las áreas afectadas por la catástofre. Con lo cual, demostramos que se podría medir el impacto en la región casi en tiempo real y sin necesidad de desplegar esfuerzos en el terreno. Por otra parte, hemos estudiado los patrones de actividad y movilidad humana para caracterizar las interacciones entre regiones de un país en desarrollo. Encontramos que las redes de llamadas y trayectorias humanas tienen estructuras de comunidades asociadas a regiones y centros urbanos. En resumen, hemos mostrado que es posible entender procesos sociales complejos por medio del análisis de datos de actividad humana y la teoría de redes complejas. A lo largo de la tesis, hemos comprobado que fenómenos sociales como la influencia, polarización política o reacción a eventos críticos quedan reflejados en los patrones estructurales y dinámicos que presentan la redes construidas a partir de datos de conversaciones en redes sociales de Internet o telefonía móvil. ABSTRACT During daily routines, we are constantly interacting with electronic devices and telecommunication services. Unconsciously, we are massively leaving traces of our activity in the service providers’ databases. These new data sources have the dimensions required to enable the observation of human behavioral patterns at large scales. As a result, there has been an unprecedented explosion of data-driven social research. In this thesis, we develop computational and mathematical methods to analyze social systems by means of the combined study of human activity data and the theory of complex networks. Our goal is to characterize and understand the emergent systems from human interactions on the new technological spaces, such as the online social network Twitter and mobile phones. We analyze systems by means of the construction of complex networks and temporal series, studying their structure, functioning and temporal evolution. We also investigate on the nature of the observed patterns, by means of the mechanisms that rule the interactions among individuals, as well as on the impact of critical events on the system’s behavior. For this purpose, we have proposed models that explain the global structures and the emergent dynamics of information flow in the system. In the studies of the online social network Twitter, we have based our analysis on specific conversations, such as political protests, important announcements and electoral processes. From the messages related to the conversations, we identify the participant users and build networks of interactions with them. We specifically build one network to represent whoreceives- whose-messages and another to represent who-propagates-whose-messages. In general, we have found that these structures have complex properties, such as explosive growth and scale-free degree distributions. Based on the topological properties of these networks, we have identified three types of user behavior that determine the information flow dynamics due to their influence. In order to measure the users’ influence on the conversations, we have introduced a new measure called user efficiency. It is defined as the number of retransmissions obtained by message posted, and it measures the effects of the individual activity on the collective reacixtions. We have observed that the probability distribution of this property is ubiquitous across several Twitter conversation, regardlessly of their dimension or social context. Therefore, we suggest that there is a universal behavior in the relationship between individual efforts and collective reactions on Twitter. In order to explain the different factors that determine the user efficiency distribution, we have developed a computational model to simulate the diffusion of messages on Twitter, based on the mechanism of independent cascades. This model, allows us to measure the impact on the emergent efficiency distribution of the underlying network topology, as well as the way that users post messages. The results indicate that the emergence of an exclusive group of highly efficient users depends upon the heterogeneity of the underlying network instead of the individual behavior. Moreover, we have also developed techniques to infer the degree of polarization in social networks. We propose a methodology to estimate opinions in social networks and to measure the degree of polarization in the obtained opinions. We have designed a model to study the effects of the opinions of a small group of influential users, called elite, on the opinions of the majority of users. The model results in an opinions distribution to which we measure the degree of polarization. We apply our methodology to measure the polarization on graphs from the messages diffusion process, during a conversation on Twitter from a polarized society. The results are in very good agreement with offline and contextual data. With this study, we have shown that our methodology is capable of detecting several degrees of polarization depending on the structure of the networks. Finally, we have also inferred the human behavior from mobile phones’ data. On the one hand, we have characterized the impact of natural disasters, like flooding, on the collective behavior. We found that the communication patterns are abruptly altered in the areas affected by the catastrophe. Therefore, we demonstrate that we could measure the impact of the disaster on the region, almost in real-time and without needing to deploy further efforts. On the other hand, we have studied human activity and mobility patterns in order to characterize regional interactions on a developing country. We found that the calls and trajectories networks present community structure associated to regional and urban areas. In summary, we have shown that it is possible to understand complex social processes by means of analyzing human activity data and the theory of complex networks. Along the thesis, we have demonstrated that social phenomena, like influence, polarization and reaction to critical events, are reflected in the structural and dynamical patterns of the networks constructed from data regarding conversations on online social networks and mobile phones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we study the univariate and bivariate truncated von Mises distribution, as a generalization of the von Mises distribution (\cite{jupp1989}), (\cite{mardia2000directional}). This implies the addition of two or four new truncation parameters in the univariate and, bivariate cases, respectively. The results include the definition, properties of the distribution and maximum likelihood estimators for the univariate and bivariate cases. Additionally, the analysis of the bivariate case shows how the conditional distribution is a truncated von Mises distribution, whereas the marginal distribution that generalizes the distribution introduced in \cite{repe}. From the viewpoint of applications, we test the distribution with simulated data, as well as with data regarding leaf inclination angles (\cite{safari}) and dihedral angles in protein chains (\cite{prote}). This research aims to assert this probability distribution as a potential option for modelling or simulating any kind of phenomena where circular distributions are applicable.\par

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X mayor que x) ? x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current collection by positively polarized cylindrical Langmuir probes immersed in flowing plasmas is analyzed using a non-stationary direct Vlasov-Poisson code. A detailed description of plasma density spatial structure as a function of the probe-to-plasma relative velocity U is presented. Within the considered parametric domain, the well-known electron density maximum close to the probe is weakly affected by U. However, in the probe wake side, the electron density minimum becomes deeper as U increases and a rarified plasma region appears. Sheath radius is larger at the wake than at the front side. Electron and ion distribution functions show specific features that are the signature of probe motion. In particular, the ion distribution function at the probe front side exhibits a filament with positive radial velocity. It corresponds to a population of rammed ions that were reflected by the electric field close to the positively biased probe. Numerical simulations reveal that two populations of trapped electrons exist: one orbiting around the probe and the other with trajectories confined at the probe front side. The latter helps to neutralize the reflected ions, thus explaining a paradox in past probe theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Services in smart environments pursue to increase the quality of people?s lives. The most important issues when developing this kind of environments is testing and validating such services. These tasks usually imply high costs and annoying or unfeasible real-world testing. In such cases, artificial societies may be used to simulate the smart environment (i.e. physical environment, equipment and humans). With this aim, the CHROMUBE methodology guides test engineers when modeling human beings. Such models reproduce behaviors which are highly similar to the real ones. Originally, these models are based on automata whose transitions are governed by random variables. Automaton?s structure and the probability distribution functions of each random variable are determined by a manual test and error process. In this paper, it is presented an alternative extension of this methodology which avoids the said manual process. It is based on learning human behavior patterns automatically from sensor data by using machine learning techniques. The presented approach has been tested on a real scenario, where this extension has given highly accurate human behavior models,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La iluminación con diodos emisores de luz (LED) está reemplazando cada vez en mayor medida a las fuentes de luz tradicionales. La iluminación LED ofrece ventajas en eficiencia, consumo de energía, diseño, tamaño y calidad de la luz. Durante más de 50 años, los investigadores han estado trabajando en mejoras LED. Su principal relevancia para la iluminación está aumentando rápidamente. Esta tesis se centra en un campo de aplicación importante, como son los focos. Se utilizan para enfocar la luz en áreas definidas, en objetos sobresalientes en condiciones profesionales. Esta iluminación de alto rendimiento requiere una calidad de luz definida, que incluya temperaturas ajustables de color correlacionadas (CCT), de alto índice de reproducción cromática (CRI), altas eficiencias, y colores vivos y brillantes. En el paquete LED varios chips de diferentes colores (rojo, azul, fósforo convertido) se combinan para cumplir con la distribución de energía espectral con alto CRI. Para colimar la luz en los puntos concretos deseados con un ángulo de emisión determinado, se utilizan blancos sintonizables y diversos colores de luz y ópticas secundarias. La combinación de una fuente LED de varios colores con elementos ópticos puede causar falta de homogeneidad cromática en la distribución espacial y angular de la luz, que debe resolverse en el diseño óptico. Sin embargo, no hay necesidad de uniformidad perfecta en el punto de luz debido al umbral en la percepción visual del ojo humano. Por lo tanto, se requiere una descripción matemática del nivel de uniformidad del color con respecto a la percepción visual. Esta tesis está organizada en siete capítulos. Después de un capítulo inicial que presenta la motivación que ha guiado la investigación de esta tesis, en el capítulo 2 se presentan los fundamentos científicos de la uniformidad del color en luces concentradas, como son: el espacio de color aplicado CIELAB, la percepción visual del color, los fundamentos de diseño de focos respecto a los motores de luz y ópticas no formadoras de imágenes, y los últimos avances en la evaluación de la uniformidad del color en el campo de los focos. El capítulo 3 desarrolla diferentes métodos para la descripción matemática de la distribución espacial del color en un área definida, como son la diferencia de color máxima, la desviación media del color, el gradiente de la distribución espacial de color, así como la suavidad radial y axial. Cada función se refiere a los diferentes factores que influyen en la visión, los cuales necesitan un tratamiento distinto que el de los datos que se tendrán en cuenta, además de funciones de ponderación que pre- y post-procesan los datos simulados o medidos para la reducción del ruido, la luminancia de corte, la aplicación de la ponderación de luminancia, la función de sensibilidad de contraste, y la función de distribución acumulativa. En el capítulo 4, se obtiene la función de mérito Usl para la estimación de la uniformidad del color percibida en focos. Se basó en los resultados de dos conjuntos de experimentos con factor humano realizados para evaluar la percepción visual de los sujetos de los patrones de focos típicos. El primer experimento con factor humano dio lugar al orden de importancia percibida de los focos. El orden de rango percibido se utilizó para correlacionar las descripciones matemáticas de las funciones básicas y la función ponderada sobre la distribución espacial del color, que condujo a la función Usl. El segundo experimento con factor humano probó la percepción de los focos bajo condiciones ambientales diversas, con el objetivo de proporcionar una escala absoluta para Usl, para poder así sustituir la opinión subjetiva personal de los individuos por una función de mérito estandarizada. La validación de la función Usl se presenta en relación con el alcance de la aplicación y condiciones, así como las limitaciones y restricciones que se realizan en el capítulo 5. Se compararon los datos medidos y simulados de varios sistemas ópticos. Se discuten los campos de aplicación , así como validaciones y restricciones de la función. El capítulo 6 presenta el diseño del sistema de focos y su optimización. Una evaluación muestra el análisis de sistemas basados en el reflector y la lente TIR. Los sistemas ópticos simulados se comparan en la uniformidad del color Usl, sensibilidad a las sombras coloreadas, eficiencia e intensidad luminosa máxima. Se ha comprobado que no hay un sistema único que obtenga los mejores resultados en todas las categorías, y que una excelente uniformidad de color se pudo alcanzar por la conjunción de dos sistemas diferentes. Finalmente, el capítulo 7 presenta el resumen de esta tesis y la perspectiva para investigar otros aspectos. ABSTRACT Illumination with light-emitting diodes (LED) is more and more replacing traditional light sources. They provide advantages in efficiency, energy consumption, design, size and light quality. For more than 50 years, researchers have been working on LED improvements. Their main relevance for illumination is rapidly increasing. This thesis is focused on one important field of application which are spotlights. They are used to focus light on defined areas, outstanding objects in professional conditions. This high performance illumination required a defined light quality including tunable correlated color temperatures (CCT), high color rendering index (CRI), high efficiencies and bright, vivid colors. Several differently colored chips (red, blue, phosphor converted) in the LED package are combined to meet spectral power distribution with high CRI, tunable white and several light colors and secondary optics are used to collimate the light into the desired narrow spots with defined angle of emission. The combination of multi-color LED source and optical elements may cause chromatic inhomogeneities in spatial and angular light distribution which needs to solved at the optical design. However, there is no need for perfect uniformity in the spot light due to threshold in visual perception of human eye. Therefore, a mathematical description of color uniformity level with regard to visual perception is required. This thesis is organized seven seven chapters. After an initial one presenting the motivation that has guided the research of this thesis, Chapter 2 introduces the scientific basics of color uniformity in spot lights including: the applied color space CIELAB, the visual color perception, the spotlight design fundamentals with regards to light engines and nonimaging optics, and the state of the art for the evaluation of color uniformity in the far field of spotlights. Chapter 3 develops different methods for mathematical description of spatial color distribution in a defined area, which are the maximum color difference, the average color deviation, the gradient of spatial color distribution as well as the radial and axial smoothness. Each function refers to different visual influencing factors, and they need different handling of data be taken into account, along with weighting functions which pre- and post-process the simulated or measured data for noise reduction, luminance cutoff, the implementation of luminance weighting, contrast sensitivity function, and cumulative distribution function. In chapter 4, the merit function Usl for the estimation of the perceived color uniformity in spotlights is derived. It was based on the results of two sets of human factor experiments performed to evaluate the visual perception of typical spotlight patterns by subjects. The first human factor experiment resulted in the perceived rank order of the spotlights. The perceived rank order was used to correlate the mathematical descriptions of basic functions and weighted function concerning the spatial color distribution, which lead to the Usl function. The second human factor experiment tested the perception of spotlights under varied environmental conditions, with to objective to provide an absolute scale for Usl, so the subjective personal opinion of individuals could be replaced by a standardized merit function. The validation of the Usl function is presented concerning the application range and conditions as well as limitations and restrictions in carried out in chapter 5. Measured and simulated data of various optical several systems were compared. Fields of applications are discussed as well as validations and restrictions of the function. Chapter 6 presents spotlight system design and their optimization. An evaluation shows the analysis of reflector-based and TIR lens systems. The simulated optical systems are compared in color uniformity Usl , sensitivity to colored shadows, efficiency, and peak luminous intensity. It has been found that no single system which performed best in all categories, and that excellent color uniformity could be reached by two different system assemblies. Finally, chapter 7 summarizes the conclusions of the present thesis and an outlook for further investigation topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente investigación tiene como objetivo principal diseñar un Modelo de Gestión de Riesgos Operacionales (MGRO) según las Directrices de los Acuerdos II y III del Comité de Supervisión Bancaria de Basilea del Banco de Pagos Internacionales (CSBB-BPI). Se considera importante realizar un estudio sobre este tema dado que son los riesgos operacionales (OpR) los responsables en gran medida de las últimas crisis financieras mundiales y por la dificultad para detectarlos en las organizaciones. Se ha planteado un modelo de gestión subdividido en dos vías de influencias. La primera acoge el paradigma holístico en el que se considera que hay múltiples maneras de percibir un proceso cíclico, así como las herramientas para observar, conocer y entender el objeto o sujeto percibido. La segunda vía la representa el paradigma totalizante, en el que se obtienen datos tanto cualitativos como cuantitativos, los cuales son complementarios entre si. Por otra parte, este trabajo plantea el diseño de un programa informático de OpR Cualitativo, que ha sido diseñado para determinar la raíz de los riesgos en las organizaciones y su Valor en Riesgo Operacional (OpVaR) basado en el método del indicador básico. Aplicando el ciclo holístico al caso de estudio, se obtuvo el siguiente diseño de investigación: no experimental, univariable, transversal descriptiva, contemporánea, retrospectiva, de fuente mixta, cualitativa (fenomenológica y etnográfica) y cuantitativa (descriptiva y analítica). La toma de decisiones y recolección de información se realizó en dos fases en la unidad de estudio. En la primera se tomó en cuenta la totalidad de la empresa Corpoelec-EDELCA, en la que se presentó un universo estadístico de 4271 personas, una población de 2390 personas y una unidad de muestreo de 87 personas. Se repitió el proceso en una segunda fase, para la Central Hidroeléctrica Simón Bolívar, y se determinó un segundo universo estadístico de 300 trabajadores, una población de 191 personas y una muestra de 58 profesionales. Como fuentes de recolección de información se utilizaron fuentes primarias y secundarias. Para recabar la información primaria se realizaron observaciones directas, dos encuestas para detectar las áreas y procesos con mayor nivel de riesgos y se diseñó un cuestionario combinado con otra encuesta (ad hoc) para establecer las estimaciones de frecuencia y severidad de pérdidas operacionales. La información de fuentes secundarias se extrajo de las bases de datos de Corpoelec-EDELCA, de la IEA, del Banco Mundial, del CSBB-BPI, de la UPM y de la UC at Berkeley, entre otras. Se establecieron las distribuciones de frecuencia y de severidad de pérdidas operacionales como las variables independientes y el OpVaR como la variable dependiente. No se realizó ningún tipo de seguimiento o control a las variables bajo análisis, ya que se consideraron estas para un instante especifico y solo se determinan con la finalidad de establecer la existencia y valoración puntual de los OpR en la unidad de estudio. El análisis cualitativo planteado en el MGRO, permitió detectar que en la unidad de investigación, el 67% de los OpR detectados provienen de dos fuentes principales: procesos (32%) y eventos externos (35%). Adicionalmente, la validación del MGRO en Corpoelec-EDELCA, permitió detectar que el 63% de los OpR en la organización provienen de tres categorías principales, siendo los fraudes externos los presentes con mayor regularidad y severidad de pérdidas en la organización. La exposición al riesgo se determinó fundamentándose en la adaptación del concepto de OpVaR que generalmente se utiliza para series temporales y que en el caso de estudio presenta la primicia de aplicarlo a datos cualitativos transformados con la escala Likert. La posibilidad de utilizar distribuciones de probabilidad típicas para datos cuantitativos en distribuciones de frecuencia y severidad de pérdidas con datos de origen cualitativo fueron analizadas. Para el 64% de los OpR estudiados se obtuvo que la frecuencia tiene un comportamiento semejante al de la distribución de probabilidad de Poisson y en un 55% de los casos para la severidad de pérdidas se obtuvo a las log-normal como las distribuciones de probabilidad más comunes, con lo que se concluyó que los enfoques sugeridos por el BCBS-BIS para series de tiempo son aplicables a los datos cualitativos. Obtenidas las distribuciones de frecuencia y severidad de pérdidas, se convolucionaron estas implementando el método de Montecarlo, con lo que se obtuvieron los enfoques de distribuciones de pérdidas (LDA) para cada uno de los OpR. El OpVaR se dedujo como lo sugiere el CSBB-BPI del percentil 99,9 o 99% de cada una de las LDA, obteniéndose que los OpR presentan un comportamiento similar al sistema financiero, resultando como los de mayor peligrosidad los que se ubican con baja frecuencia y alto impacto, por su dificultad para ser detectados y monitoreados. Finalmente, se considera que el MGRO permitirá a los agentes del mercado y sus grupos de interés conocer con efectividad, fiabilidad y eficiencia el status de sus entidades, lo que reducirá la incertidumbre de sus inversiones y les permitirá establecer una nueva cultura de gestión en sus organizaciones. ABSTRACT This research has as main objective the design of a Model for Operational Risk Management (MORM) according to the guidelines of Accords II and III of the Basel Committee on Banking Supervision of the Bank for International Settlements (BCBS- BIS). It is considered important to conduct a study on this issue since operational risks (OpR) are largely responsible for the recent world financial crisis and due to the difficulty in detecting them in organizations. A management model has been designed which is divided into two way of influences. The first supports the holistic paradigm in which it is considered that there are multiple ways of perceiving a cyclical process and contains the tools to observe, know and understand the subject or object perceived. The second way is the totalizing paradigm, in which both qualitative and quantitative data are obtained, which are complementary to each other. Moreover, this paper presents the design of qualitative OpR software which is designed to determine the root of risks in organizations and their Operational Value at Risk (OpVaR) based on the basic indicator approach. Applying the holistic cycle to the case study, the following research design was obtained: non- experimental, univariate, descriptive cross-sectional, contemporary, retrospective, mixed-source, qualitative (phenomenological and ethnographic) and quantitative (descriptive and analytical). Decision making and data collection was conducted in two phases in the study unit. The first took into account the totality of the Corpoelec-EDELCA company, which presented a statistical universe of 4271 individuals, a population of 2390 individuals and a sampling unit of 87 individuals. The process was repeated in a second phase to the Simon Bolivar Hydroelectric Power Plant, and a second statistical universe of 300 workers, a population of 191 people and a sample of 58 professionals was determined. As sources of information gathering primary and secondary sources were used. To obtain the primary information direct observations were conducted and two surveys to identify the areas and processes with higher risks were designed. A questionnaire was combined with an ad hoc survey to establish estimates of frequency and severity of operational losses was also considered. The secondary information was extracted from the databases of Corpoelec-EDELCA, IEA, the World Bank, the BCBS-BIS, UPM and UC at Berkeley, among others. The operational loss frequency distributions and the operational loss severity distributions were established as the independent variables and OpVaR as the dependent variable. No monitoring or control of the variables under analysis was performed, as these were considered for a specific time and are determined only for the purpose of establishing the existence and timely assessment of the OpR in the study unit. Qualitative analysis raised in the MORM made it possible to detect that in the research unit, 67% of detected OpR come from two main sources: external processes (32%) and external events (35%). Additionally, validation of the MORM in Corpoelec-EDELCA, enabled to estimate that 63% of OpR in the organization come from three main categories, with external fraud being present more regularly and greater severity of losses in the organization. Risk exposure is determined basing on adapting the concept of OpVaR generally used for time series and in the case study it presents the advantage of applying it to qualitative data transformed with the Likert scale. The possibility of using typical probability distributions for quantitative data in loss frequency and loss severity distributions with data of qualitative origin were analyzed. For the 64% of OpR studied it was found that the frequency has a similar behavior to that of the Poisson probability distribution and 55% of the cases for loss severity it was found that the log-normal were the most common probability distributions. It was concluded that the approach suggested by the BCBS-BIS for time series can be applied to qualitative data. Once obtained the distributions of loss frequency and severity have been obtained they were subjected to convolution implementing the Monte Carlo method. Thus the loss distribution approaches (LDA) were obtained for each of the OpR. The OpVaR was derived as suggested by the BCBS-BIS 99.9 percentile or 99% of each of the LDA. It was determined that the OpR exhibits a similar behavior to the financial system, being the most dangerous those with low frequency and high impact for their difficulty in being detected and monitored. Finally, it is considered that the MORM will allows market players and their stakeholders to know with effectiveness, efficiency and reliability the status of their entities, which will reduce the uncertainty of their investments and enable them to establish a new management culture in their organizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis doctoral presenta el desarrollo, verificación y aplicación de un método original de regionalización estadística para generar escenarios locales de clima futuro de temperatura y precipitación diarias, que combina dos pasos. El primer paso es un método de análogos: los "n" días cuya configuración atmosférica de baja resolución es más parecida a la del día problema, se seleccionan de un banco de datos de referencia del pasado. En el segundo paso, se realiza un análisis de regresión múltiple sobre los "n" días más análogos para la temperatura, mientras que para la precipitación se utiliza la distribución de probabilidad de esos "n" días análogos para obtener la estima de precipitación. La verificación de este método se ha llevado a cabo para la España peninsular y las Islas Baleares. Los resultados muestran unas buenas prestaciones para temperatura (BIAS cerca de 0.1ºC y media de errores absolutos alrededor de 1.9ºC); y unas prestaciones aceptables para la precipitación (BIAS razonablemente bajo con una media de -18%; error medio absoluto menor que para una simulación de referencia (la persistencia); y una distribución de probabilidad simulada similar a la observada según dos test no-paramétricos de similitud). Para mostrar la aplicabilidad de la metodología desarrollada, se ha aplicado en detalle en un caso de estudio. El método se aplicó a cuatro modelos climáticos bajo diferentes escenarios futuros de emisiones de gases de efecto invernadero, para la región de Aragón, produciendo así proyecciones futuras de precipitación y temperaturas máximas y mínimas diarias. La fiabilidad de la técnica de regionalización fue evaluada de nuevo para el caso de estudio mediante un proceso de verificación. Para determinar la capacidad de los modelos climáticos para simular el clima real, sus simulaciones del pasado (la denominada salida 20C3M) se regionalizaron y luego se compararon con el clima observado (los resultados son bastante robustos para la temperatura y menos concluyentes para la precipitación). Las proyecciones futuras a escala local presentan un aumento significativo durante todo el siglo XXI de las temperaturas máximas y mínimas para todos los futuros escenarios de emisiones considerados. Las simulaciones de precipitación presentan mayores incertidumbres. Además, la aplicabilidad práctica del método se demostró también mediante su utilización para producir escenarios climáticos futuros para otros casos de estudio en los distintos sectores y regiones del mundo. Se ha prestado especial atención a una aplicación en Centroamérica, una región que ya está sufriendo importantes impactos del cambio climático y que tiene un clima muy diferente. ABSTRACT This doctoral thesis presents the development, verification and application of an original downscaling method for daily temperature and precipitation, which combines two statistical approaches. The first step is an analogue approach: the “n” days most similar to the day to be downscaled are selected. In the second step, a multiple regression analysis using the “n” most analogous days is performed for temperature, whereas for precipitation the probability distribution of the “n” analogous days is used to obtain the amount of precipitation. Verification of this method has been carried out for the Spanish Iberian Peninsula and the Balearic Islands. Results show good performance for temperature (BIAS close to 0.1ºC and Mean Absolute Errors around 1.9ºC); and an acceptable skill for precipitation (reasonably low BIAS with a mean of - 18%, Mean Absolute Error lower than for a reference simulation, i.e. persistence, and a well-simulated probability distribution according to two non-parametric tests of similarity). To show the applicability of the method, a study case has been analyzed. The method was applied to four climate models under different future emission scenarios for the region of Aragón, thus producing future projections of daily precipitation and maximum and minimum temperatures. The reliability of the downscaling technique was re-assessed for the study case by a verification process. To determine the ability of the climate models to simulate the real climate, their simulations of the past (the 20C3M output) were downscaled and then compared with the observed climate – the results are quite robust for temperature and less conclusive for the precipitation. The downscaled future projections exhibit a significant increase during the entire 21st century of the maximum and minimum temperatures for all the considered future emission scenarios. Precipitation simulations exhibit greater uncertainties. Furthermore, the practical applicability of the method was demonstrated also by using it to produce future climate scenarios for some other study cases in different sectors and regions of the world. Special attention was paid to an application of the method in Central America, a region that is already suffering from significant climate change impacts and that has a very different climate from others where the method was previously applied.