31 resultados para Visual Speaker Recognition, Visual Speech Recognition, Cascading Appearance-Based Features
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (42)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (61)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (18)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (11)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (34)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- Dalarna University College Electronic Archive (5)
- Deposito de Dissertacoes e Teses Digitais - Portugal (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (14)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Galway Mayo Institute of Technology, Ireland (2)
- Georgian Library Association, Georgia (1)
- Glasgow Theses Service (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (43)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (21)
- Massachusetts Institute of Technology (21)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (16)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (11)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (54)
- Repositório da Escola Nacional de Administração Pública (ENAP) (2)
- Repositório da Produção Científica e Intelectual da Unicamp (28)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (33)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (39)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (15)
- Scielo Saúde Pública - SP (39)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (31)
- Universidade do Minho (25)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (68)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (7)
- University of Queensland eSpace - Australia (144)
- University of Washington (2)
- WestminsterResearch - UK (3)
Resumo:
Human Activity Recognition (HAR) is an emerging research field with the aim to identify the actions carried out by a person given a set of observations and the surrounding environment. The wide growth in this research field inside the scientific community is mainly explained by the high number of applications that are arising in the last years. A great part of the most promising applications are related to the healthcare field, where it is possible to track the mobility of patients with motor dysfunction as also the physical activity in patients with cardiovascular risk. Until a few years ago, by using distinct kind of sensors, a patient follow-up was possible. However, far from being a long-term solution and with the smartphone irruption, that monitoring can be achieved in a non-invasive way by using the embedded smartphone’s sensors. For these reasons this Final Degree Project arises with the main target to evaluate new feature extraction techniques in order to carry out an activity and user recognition, and also an activity segmentation. The recognition is done thanks to the inertial signals integration obtained by two widespread sensors in the greater part of smartphones: accelerometer and gyroscope. In particular, six different activities are evaluated walking, walking-upstairs, walking-downstairs, sitting, standing and lying. Furthermore, a segmentation task is carried out taking into account the activities performed by thirty users. This can be done by using Hidden Markov Models and also a set of tools tested satisfactory in speech recognition: HTK (Hidden Markov Model Toolkit).