51 resultados para Vision-Based Forced Landing
Resumo:
The aim of this article is to define the technical specifications and to design the implementation of a line of tanks that would be used in the process of waxing and de-waxing large pieces. As it is based in a real case, it is also analyzed the process of dismantling the former installation that supported these functions. The origin of this project is due to a new rating for the maintenance of landing gears which makes the previous waxing line that was prepared to work on smaller aircraft?s pieces, no longer adequate to the current workflow and processes.
Resumo:
There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manœuvres involving vehicles – overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manœuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle’s actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroën car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles – a motorbike, car, and truck – with encouraging results.
Resumo:
Esta tesis propone un sistema biométrico de geometría de mano orientado a entornos sin contacto junto con un sistema de detección de estrés capaz de decir qué grado de estrés tiene una determinada persona en base a señales fisiológicas Con respecto al sistema biométrico, esta tesis contribuye con el diseño y la implementación de un sistema biométrico de geometría de mano, donde la adquisición se realiza sin ningún tipo de contacto, y el patrón del usuario se crea considerando únicamente datos del propio individuo. Además, esta tesis propone un algoritmo de segmentación multiescala para solucionar los problemas que conlleva la adquisición de manos en entornos reales. Por otro lado, respecto a la extracción de características y su posterior comparación esta tesis tiene una contribución específica, proponiendo esquemas adecuados para llevar a cabo tales tareas con un coste computacional bajo pero con una alta precisión en el reconocimiento de personas. Por último, este sistema es evaluado acorde a la norma estándar ISO/IEC 19795 considerando seis bases de datos públicas. En relación al método de detección de estrés, esta tesis propone un sistema basado en dos señales fisiológicas, concretamente la tasa cardiaca y la conductancia de la piel, así como la creación de un innovador patrón de estrés que recoge el comportamiento de ambas señales bajo las situaciones de estrés y no-estrés. Además, este sistema está basado en lógica difusa para decidir el grado de estrés de un individuo. En general, este sistema es capaz de detectar estrés de forma precisa y en tiempo real, proporcionando una solución adecuada para sistemas biométricos actuales, donde la aplicación del sistema de detección de estrés es directa para evitar situaciónes donde los individuos sean forzados a proporcionar sus datos biométricos. Finalmente, esta tesis incluye un estudio de aceptabilidad del usuario, donde se evalúa cuál es la aceptación del usuario con respecto a la técnica biométrica propuesta por un total de 250 usuarios. Además se incluye un prototipo implementado en un dispositivo móvil y su evaluación. ABSTRACT: This thesis proposes a hand biometric system oriented to unconstrained and contactless scenarios together with a stress detection method able to elucidate to what extent an individual is under stress based on physiological signals. Concerning the biometric system, this thesis contributes with the design and implementation of a hand-based biometric system, where the acquisition is carried out without contact and the template is created only requiring information from a single individual. In addition, this thesis proposes an algorithm based on multiscale aggregation in order to tackle with the problem of segmentation in real unconstrained environments. Furthermore, feature extraction and matching are also a specific contributions of this thesis, providing adequate schemes to carry out both actions with low computational cost but with certain recognition accuracy. Finally, this system is evaluated according to international standard ISO/IEC 19795 considering six public databases. In relation to the stress detection method, this thesis proposes a system based on two physiological signals, namely heart rate and galvanic skin response, with the creation of an innovative stress detection template which gathers the behaviour of both physiological signals under both stressing and non-stressing situations. Besides, this system is based on fuzzy logic to elucidate the level of stress of an individual. As an overview, this system is able to detect stress accurately and in real-time, providing an adequate solution for current biometric systems, where the application of a stress detection system is direct to avoid situations where individuals are forced to provide the biometric data. Finally, this thesis includes a user acceptability evaluation, where the acceptance of the proposed biometric technique is assessed by a total of 250 individuals. In addition, this thesis includes a mobile implementation prototype and its evaluation.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss future lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
The OMNIWORKS project objective is to develop an autonomous and modular aerial inspection system for an off-shore meteorological mast up to 90m in length. The UAV was equipped with an omni-directional camera and vertical take-off/landing capabilities that should be simple enough to operate as to not need the interventions of a professional pilot under challenging situations. Therefore the tests included different aspects used to evaluate both the technical performance of the UAV behavior as well as the operators? point of view.
Resumo:
Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.
Resumo:
In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.
Resumo:
In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion
Resumo:
El estudio del comportamiento de la atmósfera ha resultado de especial importancia tanto en el programa SESAR como en NextGen, en los que la gestión actual del tránsito aéreo (ATM) está experimentando una profunda transformación hacia nuevos paradigmas tanto en Europa como en los EE.UU., respectivamente, para el guiado y seguimiento de las aeronaves en la realización de rutas más eficientes y con mayor precisión. La incertidumbre es una característica fundamental de los fenómenos meteorológicos que se transfiere a la separación de las aeronaves, las trayectorias de vuelo libres de conflictos y a la planificación de vuelos. En este sentido, el viento es un factor clave en cuanto a la predicción de la futura posición de la aeronave, por lo que tener un conocimiento más profundo y preciso de campo de viento reducirá las incertidumbres del ATC. El objetivo de esta tesis es el desarrollo de una nueva técnica operativa y útil destinada a proporcionar de forma adecuada y directa el campo de viento atmosférico en tiempo real, basada en datos de a bordo de la aeronave, con el fin de mejorar la predicción de las trayectorias de las aeronaves. Para lograr este objetivo se ha realizado el siguiente trabajo. Se han descrito y analizado los diferentes sistemas de la aeronave que proporcionan las variables necesarias para obtener la velocidad del viento, así como de las capacidades que permiten la presentación de esta información para sus aplicaciones en la gestión del tráfico aéreo. Se ha explorado el uso de aeronaves como los sensores de viento en un área terminal para la estimación del viento en tiempo real con el fin de mejorar la predicción de las trayectorias de aeronaves. Se han desarrollado métodos computacionalmente eficientes para estimar las componentes horizontales de la velocidad del viento a partir de las velocidades de las aeronaves (VGS, VCAS/VTAS), la presión y datos de temperatura. Estos datos de viento se han utilizado para estimar el campo de viento en tiempo real utilizando un sistema de procesamiento de datos a través de un método de mínima varianza. Por último, se ha evaluado la exactitud de este procedimiento para que esta información sea útil para el control del tráfico aéreo. La información inicial proviene de una muestra de datos de Registradores de Datos de Vuelo (FDR) de aviones que aterrizaron en el aeropuerto Madrid-Barajas. Se dispuso de datos de ciertas aeronaves durante un periodo de más de tres meses que se emplearon para calcular el vector viento en cada punto del espacio aéreo. Se utilizó un modelo matemático basado en diferentes métodos de interpolación para obtener los vectores de viento en áreas sin datos disponibles. Se han utilizado tres escenarios concretos para validar dos métodos de interpolación: uno de dos dimensiones que trabaja con ambas componentes horizontales de forma independiente, y otro basado en el uso de una variable compleja que relaciona ambas componentes. Esos métodos se han probado en diferentes escenarios con resultados dispares. Esta metodología se ha aplicado en un prototipo de herramienta en MATLAB © para analizar automáticamente los datos de FDR y determinar el campo vectorial del viento que encuentra la aeronave al volar en el espacio aéreo en estudio. Finalmente se han obtenido las condiciones requeridas y la precisión de los resultados para este modelo. El método desarrollado podría utilizar los datos de los aviones comerciales como inputs utilizando los datos actualmente disponibles y la capacidad computacional, para proporcionárselos a los sistemas ATM donde se podría ejecutar el método propuesto. Estas velocidades del viento calculadas, o bien la velocidad respecto al suelo y la velocidad verdadera, se podrían difundir, por ejemplo, a través del sistema de direccionamiento e informe para comunicaciones de aeronaves (ACARS), mensajes de ADS-B o Modo S. Esta nueva fuente ayudaría a actualizar la información del viento suministrada en los productos aeronáuticos meteorológicos (PAM), informes meteorológicos de aeródromos (AIRMET), e información meteorológica significativa (SIGMET). ABSTRACT The study of the atmosphere behaviour is been of particular importance both in SESAR and NextGen programs, where the current air traffic management (ATM) system is undergoing a profound transformation to the new paradigms both in Europe and the USA, respectively, to guide and track aircraft more precisely on more efficient routes. Uncertainty is a fundamental characteristic of weather phenomena which is transferred to separation assurance, flight path de-confliction and flight planning applications. In this respect, the wind is a key factor regarding the prediction of the future position of the aircraft, so that having a deeper and accurate knowledge of wind field will reduce ATC uncertainties. The purpose of this thesis is to develop a new and operationally useful technique intended to provide adequate and direct real-time atmospheric winds fields based on on-board aircraft data, in order to improve aircraft trajectory prediction. In order to achieve this objective the following work has been accomplished. The different sources in the aircraft systems that provide the variables needed to derivate the wind velocity have been described and analysed, as well as the capabilities which allow presenting this information for air traffic management applications. The use of aircraft as wind sensors in a terminal area for real-time wind estimation in order to improve aircraft trajectory prediction has been explored. Computationally efficient methods have been developed to estimate horizontal wind components from aircraft velocities (VGS, VCAS/VTAS), pressure, and temperature data. These wind data were utilized to estimate a real-time wind field using a data processing approach through a minimum variance method. Finally, the accuracy of this procedure has been evaluated for this information to be useful to air traffic control. The initial information comes from a Flight Data Recorder (FDR) sample of aircraft landing in Madrid-Barajas Airport. Data available for more than three months were exploited in order to derive the wind vector field in each point of the airspace. Mathematical model based on different interpolation methods were used in order to obtain wind vectors in void areas. Three particular scenarios were employed to test two interpolation methods: a two-dimensional one that works with both horizontal components in an independent way, and also a complex variable formulation that links both components. Those methods were tested using various scenarios with dissimilar results. This methodology has been implemented in a prototype tool in MATLAB © in order to automatically analyse FDR and determine the wind vector field that aircraft encounter when flying in the studied airspace. Required conditions and accuracy of the results were derived for this model. The method developed could be fed by commercial aircraft utilizing their currently available data sources and computational capabilities, and providing them to ATM system where the proposed method could be run. Computed wind velocities, or ground and true airspeeds, would then be broadcasted, for example, via the Aircraft Communication Addressing and Reporting System (ACARS), ADS-B out messages, or Mode S. This new source would help updating the wind information furnished in meteorological aeronautical products (PAM), meteorological aerodrome reports (AIRMET), and significant meteorological information (SIGMET).
Resumo:
This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification of the crop rows. The vision system is designed with a defined geometry and installed onboard a mobile agricultural vehicle, i.e. submitted to vibrations, gyros or uncontrolled movements. Crop rows can be estimated by applying geometrical parameters under image perspective projection. Because of the above undesired effects, most often, the estimation results inaccurate as compared to the real crop rows. The proposed expert system exploits the human knowledge which is mapped into two modules based on image processing techniques. The first one is intended for separating green plants (crops and weeds) from the rest (soil, stones and others). The second one is based on the system geometry where the expected crop lines are mapped onto the image and then a correction is applied through the well-tested and robust Theil–Sen estimator in order to adjust them to the real ones. Its performance is favorably compared against the classical Pearson product–moment correlation coefficient.
Resumo:
El esquema actual que existe en el ámbito de la normalización y el diseño de nuevos estándares de codificación de vídeo se está convirtiendo en una tarea difícil de satisfacer la evolución y dinamismo de la comunidad de codificación de vídeo. El problema estaba centrado principalmente en poder explotar todas las características y similitudes entre los diferentes códecs y estándares de codificación. Esto ha obligado a tener que rediseñar algunas partes comunes a varios estándares de codificación. Este problema originó la aparición de una nueva iniciativa de normalización dentro del comité ISO/IEC MPEG, llamado Reconfigurable Video Coding (RVC). Su principal idea era desarrollar un estándar de codificación de vídeo que actualizase e incrementase progresivamente una biblioteca de los componentes, aportando flexibilidad y la capacidad de tener un código reconfigurable mediante el uso de un nuevo lenguaje orientado a flujo de Actores/datos denominado CAL. Este lenguaje se usa para la especificación de la biblioteca estándar y para la creación de instancias del modelo del decodificador. Más tarde, se desarrolló un nuevo estándar de codificación de vídeo denominado High Efficiency Video Coding (HEVC), que actualmente se encuentra en continuo proceso de actualización y desarrollo, que mejorase la eficiencia y compresión de la codificación de vídeo. Obviamente se ha desarrollado una visión de HEVC empleando la metodología de RVC. En este PFC, se emplean diferentes implementaciones de estándares empleando RVC. Por ejemplo mediante los decodificadores Mpeg 4 Part 2 SP y Mpeg 4 Part 10 CBP y PHP así como del nuevo estándar de codificación HEVC, resaltando las características y utilidad de cada uno de ellos. En RVC los algoritmos se describen mediante una clase de actores que intercambian flujos de datos (tokens) para realizar diferentes acciones. El objetivo de este proyecto es desarrollar un programa que, partiendo de los decodificadores anteriormente mencionados, una serie de secuencia de vídeo en diferentes formatos de compresión y una distribución estándar de los actores (para cada uno de los decodificadores), sea capaz de generar diferentes distribuciones de los actores del decodificador sobre uno o varios procesadores del sistema sobre el que se ejecuta, para conseguir la mayor eficiencia en la codificación del vídeo. La finalidad del programa desarrollado en este proyecto es la de facilitar la realización de las distribuciones de los actores sobre los núcleos del sistema, y obtener las mejores configuraciones posibles de una manera automática y eficiente. ABSTRACT. The current scheme that exists in the field of standardization and the design of new video coding standards is becoming a difficult task to meet the evolving and dynamic community of video encoding. The problem was centered mainly in order to exploit all the features and similarities between different codecs and encoding standards. This has forced redesigning some parts common to several coding standards. This problem led to the emergence of a new initiative for standardization within the ISO / IEC MPEG committee, called Reconfigurable Video Coding (RVC). His main idea was to develop a video coding standard and gradually incrementase to update a library of components, providing flexibility and the ability to have a reconfigurable code using a new flow -oriented language Actors / data called CAL. This language is used for the specification of the standard library and to the instantiation model decoder. Later, a new video coding standard called High Efficiency Video Coding (HEVC), which currently is in continuous process of updating and development, which would improve the compression efficiency and video coding is developed. Obviously has developed a vision of using the methodology HEVC RVC. In this PFC, different implementations using RVC standard are used. For example, using decoders MPEG 4 Part 2 SP and MPEG 4 Part 10 CBP and PHP and the new coding standard HEVC, highlighting the features and usefulness of each. In RVC, the algorithms are described by a class of actors that exchange streams of data (tokens) to perform different actions. The objective of this project is to develop a program that, based on the aforementioned decoders, a series of video stream in different compression formats and a standard distribution of actors (for each of the decoders), is capable of generating different distributions decoder actors on one or more processors of the system on which it runs, to achieve greater efficiency in video coding. The purpose of the program developed in this project is to facilitate the realization of the distributions of the actors on the cores of the system, and get the best possible settings automatically and efficiently.
Resumo:
In recent years, many experimental and theoretical research groups worldwide have actively worked on demonstrating the use of liquid crystals (LCs) as adaptive lenses for image generation, waveform shaping, and non-mechanical focusing applications. In particular, important achievements have concerned the development of alternative solutions for 3D vision. This work focuses on the design and evaluation of the electro-optic response of a LC-based 2D/3D autostereoscopic display prototype. A strategy for achieving 2D/3D vision has been implemented with a cylindrical LC lens array placed in front of a display; this array acts as a lenticular sheet with a tunable focal length by electrically controlling the birefringence. The performance of the 2D/3D device was evaluated in terms of the angular luminance, image deflection, crosstalk, and 3D contrast within a simulated environment. These measurements were performed with characterization equipment for autostereoscopic 3D displays (angular resolution of 0.03 ).
Resumo:
A novel GPU-based nonparametric moving object detection strategy for computer vision tools requiring real-time processing is proposed. An alternative and efficient Bayesian classifier to combine nonparametric background and foreground models allows increasing correct detections while avoiding false detections. Additionally, an efficient region of interest analysis significantly reduces the computational cost of the detections.
Resumo:
Automatic 2D-to-3D conversion is an important application for filling the gap between the increasing number of 3D displays and the still scant 3D content. However, existing approaches have an excessive computational cost that complicates its practical application. In this paper, a fast automatic 2D-to-3D conversion technique is proposed, which uses a machine learning framework to infer the 3D structure of a query color image from a training database with color and depth images. Assuming that photometrically similar images have analogous 3D structures, a depth map is estimated by searching the most similar color images in the database, and fusing the corresponding depth maps. Large databases are desirable to achieve better results, but the computational cost also increases. A clustering-based hierarchical search using compact SURF descriptors to characterize images is proposed to drastically reduce search times. A significant computational time improvement has been obtained regarding other state-of-the-art approaches, maintaining the quality results.