90 resultados para User-Machine System
Resumo:
This paper describes the current prototype of the distributed CIAO system. It introduces the concepts of "teams" and "active modules" (or active objects), which conveniently encapsulate different types of functionalities desirable from a distributed system, from parallelism for achieving speedup to client-server applications. The user primitives available are presented and their implementation described. This implementation uses attributed variables and, as an example of a communication abstraction, a blackboard that follows the Linda model. Finally, the CIAO WWW interface is also briefly described. The unctionalities of the system are illustrated through examples, using the implemented primitives.
Resumo:
This paper describes the current prototype of the distributed CIAO system. It introduces the concepts of "teams" and "active modules" (or active objects), which conveniently encapsulate different types of functionalities desirable from a distributed system, from parallelism for achieving speedup to client-server applications. It presents the user primitives available and describes their implementation. This implementation uses attributed variables and, as an example of a communication abstraction, a blackboard that follows the Linda model. The functionalities of the system are illustrated through examples, using the implemented primitives. The implementation of most of the primitives is also described in detail.
Resumo:
We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.
Resumo:
Our intention in this note is not to provide a listing of the many features of the Ciao system: this can be found in part for example in the brochures announcing upcoming versions, in the Ciao website, or in more feature-oriented descriptions such as. Instead in this document we would like to describe the objectives and reasoning followed in our design as well as the fundamental characteristics that in our opinion make Ciao quite unique and hopefully really useful to you as a Ciao user.
Resumo:
Ciao is a public domain, next generation multi-paradigm programming environment with a unique set of features: Ciao offers a complete Prolog system, supporting ISO-Prolog, but its novel modular design allows both restricting and extending the language. As a result, it allows working with fully declarative subsets of Prolog and also to extend these subsets (or ISO-Prolog) both syntactically and semantically. Most importantly, these restrictions and extensions can be activated separately on each program module so that several extensions can coexist in the same application for different modules. Ciao also supports (through such extensions) programming with functions, higher-order (with predicate abstractions), constraints, and objects, as well as feature terms (records), persistence, several control rules (breadth-first search, iterative deepening, ...), concurrency (threads/engines), a good base for distributed execution (agents), and parallel execution. Libraries also support WWW programming, sockets, external interfaces (C, Java, TclTk, relational databases, etc.), etc. Ciao offers support for programming in the large with a robust module/object system, module-based separate/incremental compilation (automatically -no need for makefiles), an assertion language for declaring (optional) program properties (including types and modes, but also determinacy, non-failure, cost, etc.), automatic static inference and static/dynamic checking of such assertions, etc. Ciao also offers support for programming in the small producing small executables (including only those builtins used by the program) and support for writing scripts in Prolog. The Ciao programming environment includes a classical top-level and a rich emacs interface with an embeddable source-level debugger and a number of execution visualization tools. The Ciao compiler (which can be run outside the top level shell) generates several forms of architecture-independent and stand-alone executables, which run with speed, efficiency and executable size which are very competive with other commercial and academic Prolog/CLP systems. Library modules can be compiled into compact bytecode or C source files, and linked statically, dynamically, or autoloaded. The novel modular design of Ciao enables, in addition to modular program development, effective global program analysis and static debugging and optimization via source to source program transformation. These tasks are performed by the Ciao preprocessor ( ciaopp, distributed separately). The Ciao programming environment also includes lpdoc, an automatic documentation generator for LP/CLP programs. It processes Prolog files adorned with (Ciao) assertions and machine-readable comments and generates manuals in many formats including postscript, pdf, texinfo, info, HTML, man, etc. , as well as on-line help, ascii README files, entries for indices of manuals (info, WWW, ...), and maintains WWW distribution sites.
Resumo:
The new user cold start issue represents a serious problem in recommender systems as it can lead to the loss of new users who decide to stop using the system due to the lack of accuracy in the recommenda- tions received in that first stage in which they have not yet cast a significant number of votes with which to feed the recommender system?s collaborative filtering core. For this reason it is particularly important to design new similarity metrics which provide greater precision in the results offered to users who have cast few votes. This paper presents a new similarity measure perfected using optimization based on neu- ral learning, which exceeds the best results obtained with current metrics. The metric has been tested on the Netflix and Movielens databases, obtaining important improvements in the measures of accuracy, precision and recall when applied to new user cold start situations. The paper includes the mathematical formalization describing how to obtain the main quality measures of a recommender system using leave- one-out cross validation.
Resumo:
One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user.
Resumo:
Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. This paper attempts to address part of this challenge by considering the role of user satisfaction ratings and also conversational/dialog features in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. However, given the laboratory constraints, users might be positively biased when rating the system, indirectly making the reliability of the satisfaction data questionable. Machine learning experiments were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. Our results indicated that standard classifiers were significantly more successful in discriminating the abovementioned emotions and their intensities (reflected by user satisfaction ratings) from annotator data than from user data. These results corroborated that: first, satisfaction data could be used directly as an alternative target variable to model affect, and that they could be predicted exclusively by dialog features. Second, these were only true when trying to predict the abovementioned emotions using annotator?s data, suggesting that user bias does exist in a laboratory-led evaluation.
Resumo:
It is easy to get frustrated at spoken conversational agents (SCAs), perhaps because they seem to be callous. By and large, the quality of human-computer interaction is affected due to the inability of the SCAs to recognise and adapt to user emotional state. Now with the mass appeal of artificially-mediated communication, there has been an increasing need for SCAs to be socially and emotionally intelligent, that is, to infer and adapt to their human interlocutors’ emotions on the fly, in order to ascertain an affective, empathetic and naturalistic interaction. An enhanced quality of interaction would reduce users’ frustrations and consequently increase their satisfactions. These reasons have motivated the development of SCAs towards including socio-emotional elements, turning them into affective and socially-sensitive interfaces. One barrier to the creation of such interfaces has been the lack of methods for modelling emotions in a task-independent environment. Most emotion models for spoken dialog systems are task-dependent and thus cannot be used “as-is” in different applications. This Thesis focuses on improving this, in which it concerns computational modeling of emotion, personality and their interrelationship for task-independent autonomous SCAs. The generation of emotion is driven by needs, inspired by human’s motivational systems. The work in this Thesis is organised in three stages, each one with its own contribution. The first stage involved defining, integrating and quantifying the psychological-based motivational and emotional models sourced from. Later these were transformed into a computational model by implementing them into software entities. The computational model was then incorporated and put to test with an existing SCA host, a HiFi-control agent. The second stage concerned automatic prediction of affect, which has been the main challenge towards the greater aim of infusing social intelligence into the HiFi agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. In this stage, we attempted to address part of this challenge by considering the roles of user satisfaction ratings and conversational/dialog features as the respective target and predictors in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. The final stage concerned the evaluation of the emotional model through the HiFi agent. A series of user studies with 70 subjects were conducted in a real-time environment, each in a different phase and with its own conditions. All the studies involved the comparisons between the baseline non-modified and the modified agent. The findings have gone some way towards enhancing our understanding of the utility of emotion in spoken dialog systems in several ways; first, an SCA should not express its emotions blindly, albeit positive. Rather, it should adapt its emotions to user states. Second, low performance in an SCA may be compensated by the exploitation of emotion. Third, the expression of emotion through the exploitation of prosody could better improve users’ perceptions of an SCA compared to exploiting emotions through just lexical contents. Taken together, these findings not only support the success of the emotional model, but also provide substantial evidences with respect to the benefits of adding emotion in an SCA, especially in mitigating users’ frustrations and ultimately improving their satisfactions. Resumen Es relativamente fácil experimentar cierta frustración al interaccionar con agentes conversacionales (Spoken Conversational Agents, SCA), a menudo porque parecen ser un poco insensibles. En general, la calidad de la interacción persona-agente se ve en cierto modo afectada por la incapacidad de los SCAs para identificar y adaptarse al estado emocional de sus usuarios. Actualmente, y debido al creciente atractivo e interés de dichos agentes, surge la necesidad de hacer de los SCAs unos seres cada vez más sociales y emocionalmente inteligentes, es decir, con capacidad para inferir y adaptarse a las emociones de sus interlocutores humanos sobre la marcha, de modo que la interacción resulte más afectiva, empática y, en definitiva, natural. Una interacción mejorada en este sentido permitiría reducir la posible frustración de los usuarios y, en consecuencia, mejorar el nivel de satisfacción alcanzado por los mismos. Estos argumentos justifican y motivan el desarrollo de nuevos SCAs con capacidades socio-emocionales, dotados de interfaces afectivas y socialmente sensibles. Una de las barreras para la creación de tales interfaces ha sido la falta de métodos de modelado de emociones en entornos independientes de tarea. La mayoría de los modelos emocionales empleados por los sistemas de diálogo hablado actuales son dependientes de tarea y, por tanto, no pueden utilizarse "tal cual" en diferentes dominios o aplicaciones. Esta tesis se centra precisamente en la mejora de este aspecto, la definición de modelos computacionales de las emociones, la personalidad y su interrelación para SCAs autónomos e independientes de tarea. Inspirada en los sistemas motivacionales humanos en el ámbito de la psicología, la tesis propone un modelo de generación/producción de la emoción basado en necesidades. El trabajo realizado en la presente tesis está organizado en tres etapas diferenciadas, cada una con su propia contribución. La primera etapa incluyó la definición, integración y cuantificación de los modelos motivacionales de partida y de los modelos emocionales derivados a partir de éstos. Posteriormente, dichos modelos emocionales fueron plasmados en un modelo computacional mediante su implementación software. Este modelo computacional fue incorporado y probado en un SCA anfitrión ya existente, un agente con capacidad para controlar un equipo HiFi, de alta fidelidad. La segunda etapa se orientó hacia el reconocimiento automático de la emoción, aspecto que ha constituido el principal desafío en relación al objetivo mayor de infundir inteligencia social en el agente HiFi. En los últimos años, los estudios sobre reconocimiento de emociones a partir de la voz han pasado de emplear datos actuados a usar datos reales en los que la presencia u observación de emociones se produce de una manera mucho más sutil. El reconocimiento de emociones bajo estas condiciones resulta mucho más complicado y esta dificultad se pone de manifiesto en tareas tales como el etiquetado y el aprendizaje automático. En esta etapa, se abordó el problema del reconocimiento de las emociones del usuario a partir de características o métricas derivadas del propio diálogo usuario-agente. Gracias a dichas métricas, empleadas como predictores o indicadores del grado o nivel de satisfacción alcanzado por el usuario, fue posible discriminar entre satisfacción y frustración, las dos emociones prevalentes durante la interacción usuario-agente. La etapa final corresponde fundamentalmente a la evaluación del modelo emocional por medio del agente Hifi. Con ese propósito se llevó a cabo una serie de estudios con usuarios reales, 70 sujetos, interaccionando con diferentes versiones del agente Hifi en tiempo real, cada uno en una fase diferente y con sus propias características o capacidades emocionales. En particular, todos los estudios realizados han profundizado en la comparación entre una versión de referencia del agente no dotada de ningún comportamiento o característica emocional, y una versión del agente modificada convenientemente con el modelo emocional propuesto. Los resultados obtenidos nos han permitido comprender y valorar mejor la utilidad de las emociones en los sistemas de diálogo hablado. Dicha utilidad depende de varios aspectos. En primer lugar, un SCA no debe expresar sus emociones a ciegas o arbitrariamente, incluso aunque éstas sean positivas. Más bien, debe adaptar sus emociones a los diferentes estados de los usuarios. En segundo lugar, un funcionamiento relativamente pobre por parte de un SCA podría compensarse, en cierto modo, dotando al SCA de comportamiento y capacidades emocionales. En tercer lugar, aprovechar la prosodia como vehículo para expresar las emociones, de manera complementaria al empleo de mensajes con un contenido emocional específico tanto desde el punto de vista léxico como semántico, ayuda a mejorar la percepción por parte de los usuarios de un SCA. Tomados en conjunto, los resultados alcanzados no sólo confirman el éxito del modelo emocional, sino xv que constituyen además una evidencia decisiva con respecto a los beneficios de incorporar emociones en un SCA, especialmente en cuanto a reducir el nivel de frustración de los usuarios y, en última instancia, mejorar su satisfacción.
Resumo:
This paper describes the design, development and field evaluation of a machine translation system from Spanish to Spanish Sign Language (LSE: Lengua de Signos Española). The developed system focuses on helping Deaf people when they want to renew their Driver’s License. The system is made up of a speech recognizer (for decoding the spoken utterance into a word sequence), a natural language translator (for converting a word sequence into a sequence of signs belonging to the sign language), and a 3D avatar animation module (for playing back the signs). For the natural language translator, three technological approaches have been implemented and evaluated: an example-based strategy, a rule-based translation method and a statistical translator. For the final version, the implemented language translator combines all the alternatives into a hierarchical structure. This paper includes a detailed description of the field evaluation. This evaluation was carried out in the Local Traffic Office in Toledo involving real government employees and Deaf people. The evaluation includes objective measurements from the system and subjective information from questionnaires. The paper details the main problems found and a discussion on how to solve them (some of them specific for LSE).
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Resumo:
Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device) as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user -independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human -robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone.
Resumo:
In this work, the capacity and the interference statistics of the uplink of high-altitude platforms (HAPs) for asynchronous and synchronous WCDMA system assuming finite transmission power and imperfect power control are studied. Propagation loss used to calculate the received signal power is due to the distance, shadowing, and wall insertion loss. The uplink capacity for 3- and 3.75-G services is given for different cell radius assuming outdoor and indoor voice users only, data users only and a combination of the two services. For 37 macrocells HAP, the total uplink capacity is 3,034 outdoor voice users or 444 outdoor data users. When one or more than one user is an indoor user, the uplink capacity is 2,923 voice users or 444 data users when the walls entry loss is 10 dB. It is shown that the effect of the adjacent channels interference is very small.
Resumo:
This article presents the design, kinematic model and communication architecture for the multi-agent robotic system called SMART. The philosophy behind this kind of system requires the communication architecture to contemplate the concurrence of the whole system. The proposed architecture combines different communication technologies (TCP/IP and Bluetooth) under one protocol designed for the cooperation among agents and other elements of the system such as IP-Cameras, image processing library, path planner, user Interface, control block and data block. The high level control is modeled by Work-Flow Petri nets and implemented in C++ and C♯♯. Experimental results show the performance of the designed architecture.
Resumo:
The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.