38 resultados para Switched-beam Array Antenna
Resumo:
This paper presents a study of three possible solutions that can be taken into account to control the phase shift between elements in an antenna array. Because commercial digital phase shifters have become a strategic element by U.S. Government, these elements have increased their price. For this reason, it is necessary to adopt some solutions that allow us to deal with the design and construction of antenna arrays.
Resumo:
A 300 GHz radar imaging system is presented, including descriptions of the radar sensor and antenna subsystems. The antenna consists of a Bifocal Ellipsoidal Gregorian Reflector whose beam is scanned by a combination of the rotation and vertical tilting of a flat small secondary mirror. A prototype is being mounted and its characterization will be presented.
Resumo:
Multiple-input multiple-output (MIMO) systems have entailed a great enhancement in wireless communications performances. The use of multiple antennas at each side of the radio link has been included in recent drafts and standards such as WLAN, WIMAX, or DVB-T2. The MIMO performances depend on the antenna array characteristics and thus several aspects have to be taken into account to design MIMO antennas. In the literature, many articles can be found in terms of capacity or antenna design, but in this article, different types of antenna arrays for MIMO systems are measured in a reverberation chamber with and without a phantom as a user's head. As a result, the MIMO performances are degraded by the user in terms of efficiency, diversity gain, and capacity. Omnidirectional antennas such as monopoles with high radiation efficiency offer the highest performance for a rich scattering nonline of sight indoor environment.
Resumo:
Raman scattering of Si nanowires (NWs) presents antenna effects. The electromagnetic resonance depends on the electromagnetic coupling of the system laser/NW/substrate. The antenna effect of the Raman signal was measured in individual NWs deposited on different substrates, and also free standing NWs in air. The one phonon Raman band in NWs can reach high intensities depending on the system configuration; values of Raman intensity per unit volume more than a few hundred times with respect to bulk substrate can be obtainedRaman scattering of Si nanowires (NWs) presents antenna effects. The electromagnetic resonance depends on the electromagnetic coupling of the system laser/NW/substrate. The antenna effect of the Raman signal was measured in individual NWs deposited on different substrates, and also free standing NWs in air. The one phonon Raman band in NWs can reach high intensities depending on the system configuration; values of Raman intensity per unit volume more than a few hundred times with respect to bulk substrate can be obtained
Resumo:
This paper presents the design and characterization process of an active array demonstrator for the mid-frequency range (i.e., 300 MHz-1000 MHz) of the future Square Kilometre Array (SKA) radio telescope. This demonstrator, called FIDA3 (FG-IGN: Fundación General Instituto Geográfico Nacional - Differential Active Antenna Array), is part of the Spanish contribution for the SKA project. The main advantages provided by this design include the use of a dielectric-free structure, and the use of a fully-differential receiver in which differential low-noise amplifiers (LNAs) are directly connected to the balanced tapered-slot antennas (TSAs). First, the radiating structure and the differential low-noise amplifiers were separately designed and measured, obtaining good results (antenna elements with low voltage standing-wave ratios, array scanning capabilities up to 45°, and noise temperatures better than 52 K with low-noise amplifiers at room temperature). The potential problems due to the differential nature of the proposed solution are discussed, so some effective methods to overcome such limitations are proposed. Second, the complete active antenna array receiving system was assembled, and a 1 m2 active antenna array tile was characterized.
Resumo:
A novel tunable liquid crystal microaxicon array is proposed and experimentally demonstrated. The proposed structure is capable of generating tunable axicons (thousands of elements) of micrometric size, with simple control (four control voltages) and low voltage, and is totally reconfigurable. Depending on the applied voltages, control over the diameter, as well as the effective wedge angle, can be achieved. Controls over the diameter ranging from 107 to 77 μm have been demonstrated. In addition, a control over the phase profile tunability, from 12π to 24π radians, has been demonstrated. This result modifies the effective cone angle. The diameter tunability, as well the effective cone angle, results in a control over the nondiffractive Bessel beam distance. The RMS wavefront deviation from the ideal axicon is only λ∕3. The proposed device has several advantages over the existing microaxicon arrays, including being simple having a low cost. The device could contribute to developing new applications and to reducing the fabrication costs of current devices.
Resumo:
The design, fabrication and measured results are presented for a reconfigurable reflectarray antenna based on liquid crystals (LC) which operates above 100 GHz. The antenna has been designed to provide beam scanning capabilities over a wide angular range, a large bandwidth and reduced Side-Lobe Level. Measured radiation patterns are in good agreement with simulations, and show that the antenna generates an electronically steerable beam in one plane over an angular range of 55º in the frequency band from 96 to 104 GHz. The Side Lobes Level is lower than -13 dB for all the scan angles and -18 dB is obtained over 16% of the scan range. The measured performance is significantly better than previously published results for this class of electronically tunable antenna, and moreover verifies the accuracy of the proposed procedure for LC modeling and antenna design.
Resumo:
This work reports on the growth of (In, Ga)N core−shell micro pillars by plasma-assisted molecular beam epitaxy using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template. Upon (In, Ga)N growth, core−shell structures with emission at around 3.0 eV are formed. Further, the fabrication of a core−shell pin structure is demonstrated.