39 resultados para Software product lines


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation, after testing that neither the definition of Agile methodologies, nor the current tools that support them, such as Scrum or XP, gave guidance for stages of software development prior to the definition of the first interaction of development; we proceeded to study the state of the art of Inception techniques, that is, techniques to deal with this early phase of the project, that would help guide its development. From the analysis of these Inception techniques, we defined what we considered as the essential properties of an Inception framework. With that list at hand, it was found that no current Inception framework supported all the features, also, we found that it did not exist, either, any software application on the market that did it. Finally, after checking the above gaps, we defined the Inception framework "Agile Incepti-ON", with all the practices necessary to meet the requirements specified above. In addition to this, a software application was developed to support the practices defined in the Inception framework, called "Agile Dojo".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antecedentes: Esta investigación se enmarca principalmente en la replicación y secundariamente en la síntesis de experimentos en Ingeniería de Software (IS). Para poder replicar, es necesario disponer de todos los detalles del experimento original. Sin embargo, la descripción de los experimentos es habitualmente incompleta debido a la existencia de conocimiento tácito y a la existencia de otros problemas tales como: La carencia de un formato estándar de reporte, la inexistencia de herramientas que den soporte a la generación de reportes experimentales, etc. Esto provoca que no se pueda reproducir fielmente el experimento original. Esta problemática limita considerablemente la capacidad de los experimentadores para llevar a cabo replicaciones y por ende síntesis de experimentos. Objetivo: La investigación tiene como objetivo formalizar el proceso experimental en IS, de modo que facilite la comunicación de información entre experimentadores. Contexto: El presente trabajo de tesis doctoral ha sido desarrollado en el seno del Grupo de Investigación en Ingeniería del Software Empírica (GrISE) perteneciente a la Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF) de la Universidad Politécnica de Madrid (UPM), como parte del proyecto TIN2011-23216 denominado “Tecnologías para la Replicación y Síntesis de Experimentos en Ingeniería de Software”, el cual es financiado por el Gobierno de España. El grupo GrISE cumple a la perfección con los requisitos necesarios (familia de experimentos establecida, con al menos tres líneas experimentales y una amplia experiencia en replicaciones (16 replicaciones hasta 2011 en la línea de técnicas de pruebas de software)) y ofrece las condiciones para que la investigación se lleve a cabo de la mejor manera, como por ejemplo, el acceso total a su información. Método de Investigación: Para cumplir este objetivo se opta por Action Research (AR) como el método de investigación más adecuado a las características de la investigación, para obtener resultados a través de aproximaciones sucesivas que abordan los problemas concretos de comunicación entre experimentadores. Resultados: Se formalizó el modelo conceptual del ciclo experimental desde la perspectiva de los 3 roles principales que representan los experimentadores en el proceso experimental, siendo estos: Gestor de la Investigación (GI), Gestor del Experimento (GE) y Experimentador Senior (ES). Por otra parte, se formalizó el modelo del ciclo experimental, a través de: Un workflow del ciclo y un diagrama de procesos. Paralelamente a la formalización del proceso experimental en IS, se desarrolló ISRE (de las siglas en inglés Infrastructure for Sharing and Replicating Experiments), una prueba de concepto de entorno de soporte a la experimentación en IS. Finalmente, se plantearon guías para el desarrollo de entornos de soporte a la experimentación en IS, en base al estudio de las características principales y comunes de los modelos de las herramientas de soporte a la experimentación en distintas disciplinas experimentales. Conclusiones: La principal contribución de la investigación esta representada por la formalización del proceso experimental en IS. Los modelos que representan la formalización del ciclo experimental, así como la herramienta ISRE, construida a modo de evaluación de los modelos, fueron encontrados satisfactorios por los experimentadores del GrISE. Para consolidar la validez de la formalización, consideramos que este estudio debería ser replicado en otros grupos de investigación representativos en la comunidad de la IS experimental. Futuras Líneas de Investigación: El cumplimiento de los objetivos, de la mano con los hallazgos alcanzados, han dado paso a nuevas líneas de investigación, las cuales son las siguientes: (1) Considerar la construcción de un mecanismo para facilitar el proceso de hacer explícito el conocimiento tácito de los experimentadores por si mismos de forma colaborativa y basados en el debate y el consenso , (2) Continuar la investigación empírica en el mismo grupo de investigación hasta cubrir completamente el ciclo experimental (por ejemplo: experimentos nuevos, síntesis de resultados, etc.), (3) Replicar el proceso de investigación en otros grupos de investigación en ISE, y (4) Renovar la tecnología de la prueba de concepto, tal que responda a las restricciones y necesidades de un entorno real de investigación. ABSTRACT Background: This research addresses first and foremost the replication and also the synthesis of software engineering (SE) experiments. Replication is impossible without access to all the details of the original experiment. But the description of experiments is usually incomplete because knowledge is tacit, there is no standard reporting format or there are hardly any tools to support the generation of experimental reports, etc. This means that the original experiment cannot be reproduced exactly. These issues place considerable constraints on experimenters’ options for carrying out replications and ultimately synthesizing experiments. Aim: The aim of the research is to formalize the SE experimental process in order to facilitate information communication among experimenters. Context: This PhD research was developed within the empirical software engineering research group (GrISE) at the Universidad Politécnica de Madrid (UPM)’s School of Computer Engineering (ETSIINF) as part of project TIN2011-23216 entitled “Technologies for Software Engineering Experiment Replication and Synthesis”, which was funded by the Spanish Government. The GrISE research group fulfils all the requirements (established family of experiments with at least three experimental lines and lengthy replication experience (16 replications prior to 2011 in the software testing techniques line)) and provides favourable conditions for the research to be conducted in the best possible way, like, for example, full access to information. Research Method: We opted for action research (AR) as the research method best suited to the characteristics of the investigation. Results were generated successive rounds of AR addressing specific communication problems among experimenters. Results: The conceptual model of the experimental cycle was formalized from the viewpoint of three key roles representing experimenters in the experimental process. They were: research manager, experiment manager and senior experimenter. The model of the experimental cycle was formalized by means of a workflow and a process diagram. In tandem with the formalization of the SE experimental process, infrastructure for sharing and replicating experiments (ISRE) was developed. ISRE is a proof of concept of a SE experimentation support environment. Finally, guidelines for developing SE experimentation support environments were designed based on the study of the key features that the models of experimentation support tools for different experimental disciplines had in common. Conclusions: The key contribution of this research is the formalization of the SE experimental process. GrISE experimenters were satisfied with both the models representing the formalization of the experimental cycle and the ISRE tool built in order to evaluate the models. In order to further validate the formalization, this study should be replicated at other research groups representative of the experimental SE community. Future Research Lines: The achievement of the aims and the resulting findings have led to new research lines, which are as follows: (1) assess the feasibility of building a mechanism to help experimenters collaboratively specify tacit knowledge based on debate and consensus, (2) continue empirical research at the same research group in order to cover the remainder of the experimental cycle (for example, new experiments, results synthesis, etc.), (3) replicate the research process at other ESE research groups, and (4) update the tools of the proof of concept in order to meet the constraints and needs of a real research environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ML 1.4 is widely accepted as the standard for representing the various software artifacts generated by a development process. For this reason, there have been attempts to use this language to represent the software architec- ture of systems as well. Unfortunately, these attempts have ended in representa- tions (boxes and lines) already criticized by the software architecture commu- nity. Recently, OMG has published a draft that will constitute the future UML 2.0 specification. In this paper we compare the capacities of UML 1.4 and UML 2.0 to describe software architectures. In particular, we study extensions of both UML versions to describe the static view of the C3 architectural style (a simplification of the C2 style). One of the results of this study is the difficulties found when using the UML 2.0 metamodel to describe the concept of connector in a software architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solution for the problem of reusability of software system for batch production systems is proposed. It is based on ISA S88 standard that prescribes the abstraction of elements in the manufacturing system that is equipment, processes and procedures abstraction, required to make a product batch. An easy to apply data scheme, compatible with the standard, is developed for management of production information. In addition to flexibility provided by the S88 standard, software system reusability requires a solution supporting manufacturing equipment reconfigurability. Toward this end a coupling mechanism is developed. A software tool, including these solutions, was developed and validated at laboratory level, using product manufacturing information of an actual plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este artículo presenta el análisis de los resultados obtenidos al aplicar TSPi en el desarrollo de un proyecto software en una microempresa desde el punto de vista de la calidad y la productividad. La organización en estudio necesitaba mejorar la calidad de sus procesos pero no contaba con los recursos económicos que requieren modelos como CMMI-DEV. Por esta razón, se decidió utilizar un proceso adaptado a la organización basado en TSPi, observándose una reducción en la desviación de las estimaciones, un incremento en la productividad, y una mejora en la calidad.---ABSTRACT---This article shows the benefits of developing a software project using TSPi in a “Very Small Enterprise” based in quality and productivity measures. An adapted process from the current process based on the TSPi was defined and the team was trained in it. The workaround began by gathering historical data from previous projects in order to get a measurement repository, and then the project metrics were collected. Finally, the process, product and quality improvements were verified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article introduces a small setting case study about the benefits of using TSPi in a software project. An adapted process from the current process based on the TSPi was defined. The pilot project had schedule and budget constraints. The process began by gathering historical data from previous projects in order to get a measurement repository. The project was launched with the following goals: increase the productivity, reduce the test time and improve the product quality. Finally, the results were analysed and the goals were verified

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a case study about the TSPi benefits in a software project under a Small Settings environment. An adapted process based on the TSPi was defined. The pilot project had a schedule and budget restricted. The process began collecting historical projects data in order to get a measure repository. The project was launched defining the following goals: increase the productivity, reduce the test time and improve the product quality. Finally, the results were analysed and the goals were verified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La Ingeniería de Pruebas está especializada en la verificación y validación del Software,y formalmente se define como: “Proceso de desarrollo que emplea métodos rigurosos para evaluar la corrección y calidad del producto a lo largo de todo su ciclo de vida” [3]. Este proceso comprende un conjunto de métodos, procedimientos y técnicas formalmente definidas las cuales, usadas de forma sistemática, facilitan la identificación de la mayor cantidad de errores y fallos posibles de un software. Un software que pase un proceso riguroso de pruebas es un producto de calidad que seguramente facilitará la labor del Ingeniero de Software en la corrección de futuras incidencias, algunas de ellas generadas tras la implantación en el entorno real. Este proceso constituye un área de la Ingeniería del Software y una especialidad por tanto, de la misma. De forma simple, la consecución de una correcta Verificación y Validación del Software requiere de algunas actividades imprescindibles como: - Realizar un plan de pruebas del proyecto. - Actualizar dicho plan y corregirlo en caso necesario. - Revisar los documentos de análisis de requisitos. - Ejecutar las pruebas en las diferentes fases del desarrollo del proyecto. - Documentar el diseño y la ejecución de las pruebas. - Generar documentos con los resultados y anomalías de las pruebas ya ejecutadas. Actualmente, la Ingeniería de Pruebas no es muy reconocida como área de trabajo independiente sino más bien, un área inmersa dentro de la Ingeniería de Software. En el entorno laboral existe el perfil de Ingeniero de Pruebas, sin embargo pocos ingenieros de software tienen claro querer ser Ingenieros de Pruebas (probadores o testers) debido a que nunca han tenido la oportunidad de enfrentarse a actividades prácticas reales dentro de los centros de estudios universitarios donde cursan la carrera. Al ser un área de inherente ejercicio profesional, la parte correspondiente de la Ingeniería de Pruebas suele enfocarse desde un punto de vista teórico más que práctico. Hay muchas herramientas para la creación de pruebas y de ayuda para los ingenieros de pruebas, pero la mayoría son de pago o hechas a medida para grandes empresas que necesitan dicho software. Normalmente la gente conoce lo que es la Ingeniería de Pruebas únicamente cuando se empieza a adquirir experiencia en dicha área en el ejercicio profesional dentro de una empresa. Con lo cual, el acercamiento durante la carrera no necesariamente le ha ofrecido al profesional en Ingeniería, la oportunidad de trabajar en esta rama de la Ingeniería del Software y en algunos casos, NOVATests: Metodología y herramienta software de apoyo para los Ingenieros de Prueba Junior 4 los recién egresados comienzan su vida profesional con algún desconocimiento en este sentido. Es por el conjunto de estas razones, que mi intención en este proyecto es proponer una metodología y una herramienta software de apoyo a dicha metodología, para que los estudiantes de carreras de Ingeniería Software y afines, e ingenieros recién egresados con poca experiencia o ninguna en esta área (Ingenieros de Pruebas Junior), puedan poner en práctica las actividades de la Ingeniería de Pruebas dentro de un entorno lo más cercano posible al ejercicio de la labor profesional. De esta forma, podrían desarrollar las tareas propias de dicha área de una manera fácil e intuitiva, favoreciendo un mayor conocimiento y experiencia de la misma. ABSTRACT The software engineering is specialized in the verification and validation of Software and it is formally defined as: “Development process which by strict methods evaluates and corrects the quality of the product along its lifecycle”. This process contains a number of methods, procedures and techniques formally defined which used systematically make easier the identification of the highest quantity of error and failures within a Software. A software going through this rigorous process of tests will become a quality product that will help the software engineer`s work while correcting incidences. Some of them probably generated after the deployment in a real environment. This process belongs to the Software engineering and therefore it is a specialization itself. Simplifying, the correct verification and validation of a software requires some essential activities such as: -Create a Test Plan of the project - Update this Test Plan and correct if necessary - Check Requirement’s specification documents -Execute the different tests among all the phases of the project - Create the pertinent documentation about design and execution of these tests. - Generate the result documents and all the possible incidences the tests could contain. Currently, the Test engineering is not recognized as a work area but an area immerse within the Software engineering. The professional environment includes the role of Test engineer, but only a few software engineers have clear to become Test engineers (testers) because they have never had the chance to face this activities within the university study centers where they take study of this degree. Since there are little professional environments, this area is focused from a theoretical way instead of a more practical vision. There are plenty of tools helping the Test engineer, but most of them are paid tools or bespoke tools for big companies in need of this software. Usually people know what test engineering is by starting working on it and not before, when people start acquiring experience in this field within a company. Therefore, the degree studied have not approach this field of the Software engineering before and in some cases the graduated students start working without any knowledge in this area. Because of this reasons explained, it is my intention to propose this Project: a methodology and a software tool supporting this methodology so the students of software engineering and similar ones but also graduated students with little experience in this area (Junior Test Engineers), can afford practice in this field and get used to the activities related with the test engineering. Because of this they will be able to carry out the proper tasks of this area easier, enforcing higher and better knowledge and experience of it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La capacidad de transporte es uno de los baremos fundamentales para evaluar la progresión que puede llegar a tener un área económica y social. Es un sector de elevada importancia para la sociedad actual. Englobado en los distintos tipos de transporte, uno de los medios de transporte que se encuentra más en alza en la actualidad, es el ferroviario. Tanto para movilidad de pasajeros como para mercancías, el tren se ha convertido en un medio de transporte muy útil. Se encuentra dentro de las ciudades, entre ciudades con un radio pequeño entre ellas e incluso cada vez más, gracias a la alta velocidad, entre ciudades con gran distancia entre ellas. Esta Tesis pretende ayudar en el diseño de una de las etapas más importantes de los Proyectos de instalación de un sistema ferroviario: el sistema eléctrico de tracción. La fase de diseño de un sistema eléctrico de tracción ferroviaria se enfrenta a muchas dudas que deben ser resueltas con precisión. Del éxito de esta fase dependerá la capacidad de afrontar las demandas de energía de la explotación ferroviaria. También se debe atender a los costes de instalación y de operación, tanto costes directos como indirectos. Con la Metodología que se presenta en esta Tesis se ofrecerá al diseñador la opción de manejar un sistema experto que como soluciones le plantee un conjunto de escenarios de sistemas eléctricos correctos, comprobados por resolución de modelos de ecuaciones. Correctos desde el punto de vista de validez de distintos parámetros eléctrico, como de costes presupuestarios e impacto de costes indirectos. Por tanto, el diseñador al haber hecho uso de esta Metodología, tendría en un espacio de tiempo relativamente corto, un conjunto de soluciones factibles con las que poder elegir cuál convendría más según sus intereses finales. Esta Tesis se ha desarrollado en una vía de investigación integrada dentro del Centro de Investigaciones Ferroviarias CITEF-UPM. Entre otros proyectos y vías de investigación, en CITEF se ha venido trabajando en estudios de validación y dimensionamiento de sistemas eléctricos ferroviarios con diversos y variados clientes y sistemas ferroviarios. A lo largo de los proyectos realizados, el interés siempre ha girado mayoritariamente sobre los siguientes parámetros del sistema eléctrico: - Calcular número y posición de subestaciones de tracción. Potencia de cada subestación. - Tipo de catenaria a lo largo del recorrido. Conductores que componen la catenaria. Características. - Calcular número y posición de autotransformadores para sistemas funcionando en alterna bitensión o 2x25kV. - Posición Zonas Neutras. - Validación según normativa de: o Caídas de tensión en la línea o Tensiones máximas en el retorno de la línea o Sobrecalentamiento de conductores o Sobrecalentamiento de los transformadores de las subestaciones de tracción La idea es que las soluciones aportadas por la Metodología sugieran escenarios donde de estos parámetros estén dentro de los límites que marca la normativa. Tener la posibilidad de tener un repositorio de posibles escenarios donde los parámetros y elementos eléctricos estén calculados como correctos, aporta un avance en tiempos y en pruebas, que mejoraría ostensiblemente el proceso habitual de diseño para los sistemas eléctricos ferroviarios. Los costes directos referidos a elementos como subestaciones de tracción, autotransformadores, zonas neutras, ocupan un gran volumen dentro del presupuesto de un sistema ferroviario. En esta Tesis se ha querido profundizar también en el efecto de los costes indirectos provocados en la instalación y operación de sistemas eléctricos. Aquellos derivados del impacto medioambiental, los costes que se generan al mantener los equipos eléctricos y la instalación de la catenaria, los costes que implican la conexión entre las subestaciones de tracción con la red general o de distribución y por último, los costes de instalación propios de cada elemento compondrían los costes indirectos que, según experiencia, se han pensado relevantes para ejercer un cierto control sobre ellos. La Metodología cubrirá la posibilidad de que los diseños eléctricos propuestos tengan en cuenta variaciones de coste inasumibles o directamente, proponer en igualdad de condiciones de parámetros eléctricos, los más baratos en función de los costes comentados. Analizando los costes directos e indirectos, se ha pensado dividir su impacto entre los que se computan en la instalación y los que suceden posteriormente, durante la operación de la línea ferroviaria. Estos costes normalmente suelen ser contrapuestos, cuánto mejor es uno peor suele ser el otro y viceversa, por lo que hace falta un sistema que trate ambos objetivos por separado. Para conseguir los objetivos comentados, se ha construido la Metodología sobre tres pilares básicos: - Simulador ferroviario Hamlet: Este simulador integra módulos para construir esquemas de vías ferroviarios completos; módulo de simulación mecánica y de la tracción de material rodante; módulo de señalización ferroviaria; módulo de sistema eléctrico. Software realizado en C++ y Matlab. - Análisis y estudio de cómo focalizar los distintos posibles escenarios eléctricos, para que puedan ser examinados rápidamente. Pico de demanda máxima de potencia por el tráfico ferroviario. - Algoritmos de optimización: A partir de un estudio de los posibles algoritmos adaptables a un sistema tan complejo como el que se plantea, se decidió que los algoritmos genéticos serían los elegidos. Se han escogido 3 algoritmos genéticos, permitiendo recabar información acerca del comportamiento y resultados de cada uno de ellos. Los elegidos por motivos de tiempos de respuesta, multiobjetividad, facilidad de adaptación y buena y amplia aplicación en proyectos de ingeniería fueron: NSGA-II, AMGA-II y ɛ-MOEA. - Diseño de funciones y modelo preparado para trabajar con los costes directos e indirectos y las restricciones básicas que los escenarios eléctricos no deberían violar. Estas restricciones vigilan el comportamiento eléctrico y la estabilidad presupuestaria. Las pruebas realizadas utilizando el sistema han tratado o bien de copiar situaciones que se puedan dar en la realidad o directamente sistemas y problemas reales. Esto ha proporcionado además de la posibilidad de validar la Metodología, también se ha posibilitado la comparación entre los algoritmos genéticos, comparar sistemas eléctricos escogidos con los reales y llegar a conclusiones muy satisfactorias. La Metodología sugiere una vía de trabajo muy interesante, tanto por los resultados ya obtenidos como por las oportunidades que puede llegar a crear con la evolución de la misma. Esta Tesis se ha desarrollado con esta idea, por lo que se espera pueda servir como otro factor para trabajar con la validación y diseño de sistemas eléctricos ferroviarios. ABSTRACT Transport capacity is one of the critical points to evaluate the progress than a specific social and economical area is able to reach. This is a sector of high significance for the actual society. Included inside the most common types of transport, one of the means of transport which is elevating its use nowadays is the railway. Such as for passenger transport of weight movements, the train is being consolidated like a very useful mean of transport. Railways are installed in many geography areas. Everyone know train in cities, or connecting cities inside a surrounding area or even more often, taking into account the high-speed, there are railways infrastructure between cities separated with a long distance. This Ph.D work aims to help in the process to design one of the most essential steps in Installation Projects belonging to a railway system: Power Supply System. Design step of the railway power supply, usually confronts to several doubts and uncertainties, which must be solved with high accuracy. Capacity to supply power to the railway traffic depends on the success of this step. On the other hand is very important to manage the direct and indirect costs derived from Installation and Operation. With the Methodology is presented in this Thesis, it will be offered to the designer the possibility to handle an expert system that finally will fill a set of possible solutions. These solutions must be ready to work properly in the railway system, and they were tested using complex equation models. This Thesis has been developed through a research way, integrated inside Citef (Railway Research Centre of Technical University of Madrid). Among other projects and research ways, in Citef has been working in several validation studies and dimensioning of railway power supplies. It is been working by a large range of clients and railways systems. Along the accomplished Projects, the main goal has been rounded mostly about the next list of parameters of the electrical system: - Calculating number and location of traction substations. Power of each substation. - Type of Overhead contact line or catenary through the railway line. The wires which set up the catenary. Main Characteristics. - Calculating number and position of autotransformers for systems working in alternating current bi-voltage of called 2x25 kV. - Location of Neutral Zones. - Validating upon regulation of: o Drop voltages along the line o Maximum return voltages in the line o Overheating/overcurrent of the wires of the catenary o Avoiding overheating in the transformers of the traction substations. Main objective is that the solutions given by the Methodology, could be suggest scenarios where all of these parameters from above, would be between the limits established in the regulation. Having the choice to achieve a repository of possible good scenarios, where the parameters and electrical elements will be assigned like ready to work, that gives a great advance in terms of times and avoiding several tests. All of this would improve evidently the regular railway electrical systems process design. Direct costs referred to elements like traction substations, autotransformers, neutral zones, usually take up a great volume inside the general budget in railway systems. In this Thesis has been thought to bear in mind another kind of costs related to railway systems, also called indirect costs. These could be enveloped by those enmarked during installation and operation of electrical systems. Those derived from environmental impact; costs generated during the maintenance of the electrical elements and catenary; costs involved in the connection between traction substations and general electric grid; finally costs linked with the own installation of the whole electrical elements needed for the correct performance of the railway system. These are integrated inside the set has been collected taking into account own experience and research works. They are relevant to be controlled for our Methodology, just in case for the designers of this type of systems. The Methodology will cover the possibility that the final proposed power supply systems will be hold non-acceptable variations of costs, comparing with initial expected budgets, or directly assuming a threshold of budget for electrical elements in actual scenario, and achieving the cheapest in terms of commented costs from above. Analyzing direct and indirect costs, has been thought to divide their impact between two main categories. First one will be inside the Installation and the other category will comply with the costs often happens during Railway Operation time. These costs normally are opposed, that means when one is better the other turn into worse, in costs meaning. For this reason is necessary treating both objectives separately, in order to evaluate correctly the impact of each one into the final system. The objectives detailed before build the Methodology under three basic pillars: - Railway simulator Hamlet: This software has modules to configure many railway type of lines; mechanical and traction module to simulate the movement of rolling stock; signaling module; power supply module. This software has been developed using C++ and Matlab R13a - Previously has been mandatory to study how would be possible to work properly with a great number of feasible electrical systems. The target comprised the quick examination of these set of scenarios in terms of time. This point is talking about Maximum power demand peaks by railway operation plans. - Optimization algorithms. A railway infrastructure is a very complex system. At the beginning it was necessary to search about techniques and optimization algorithms, which could be adaptable to this complex system. Finally three genetic multiobjective algorithms were the chosen. Final decision was taken attending to reasons such as time complexity, able to multiobjective, easy to integrate in our problem and with a large application in engineering tasks. They are: NSGA-II, AMGA-II and ɛ-MOEA. - Designing objectives functions and equation model ready to work with the direct and indirect costs. The basic restrictions are not able to avoid, like budgetary or electrical, connected hardly with the recommended performance of elements, catenary and safety in a electrical railway systems. The battery of tests launched to the Methodology has been designed to be as real as possible. In fact, due to our work in Citef and with real Projects, has been integrated and configured three real railway lines, in order to evaluate correctly the final results collected by the Methodology. Another topic of our tests has been the comparison between the performances of the three algorithms chosen. Final step has been the comparison again with different possible good solutions, it means power supply system designs, provided by the Methodology, testing the validity of them. Once this work has been finished, the conclusions have been very satisfactory. Therefore this Thesis suggest a very interesting way of research and work, in terms of the results obtained and for the future opportunities can be created with the evolution of this. This Thesis has been developed with this idea in mind, so is expected this work could adhere another factor to work in the difficult task of validation and design of railway power supply systems.