39 resultados para Reliability assessments
Resumo:
Experiences in decentralized rural electrification programmes using solar home systems have suffered difficulties during the operation and maintenance phase, due in many cases, to the underestimation of the maintenance cost, because of the decentralized character of the activity, and also because the reliability of the solar home system components is frequently unknown. This paper reports on the reliability study and cost characterization achieved in a large photovoltaic rural electrification programme carried out in Morocco. The paper aims to determinate the reliability features of the solar systems, focusing in the in-field testing for batteries and photovoltaic modules. The degradation rates for batteries and PV modules have been extracted from the in-field experiments. On the other hand, the main costs related to the operation and maintenance activity have been identified with the aim of establishing the main factors that lead to the failure of the quality sustainability in many rural electrification programmes.
Resumo:
ABSTRACT Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30-year warranty for these 1 mm2-sized GaAs cells (manufactured according to a light emitting diode-like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C.
Resumo:
The aim of the study was to evaluate the inter-operator reliability of OPTA Client System which is used to collect live football match statistics by OPTA Sportsdata Company. Two groups of experienced operators were required to analyze a Spanish league match independently. Results showed that team events coded by independent operators reached a very good agreement (kappa values were 0.92 and 0.94) and average difference of event time was 0.06±0.04 s. The reliability of goalkeeper actions was also at high level, kappa values were 0.92 and 0.86. The high intra-class correlation coefficients (ranged from 0.88 to 1.00) and low standardized typical errors (varied from 0.00 to 0.37) of different match actions and indicators of individual outfield players showed a high level of inter-operator reliability as well. These results suggest that the OPTA Client System is reliable to be used to collect live football match statistics by well trained operators.
Resumo:
Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view)are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized.
Resumo:
Los análisis de fiabilidad representan una herramienta adecuada para contemplar las incertidumbres inherentes que existen en los parámetros geotécnicos. En esta Tesis Doctoral se desarrolla una metodología basada en una linealización sencilla, que emplea aproximaciones de primer o segundo orden, para evaluar eficientemente la fiabilidad del sistema en los problemas geotécnicos. En primer lugar, se emplean diferentes métodos para analizar la fiabilidad de dos aspectos propios del diseño de los túneles: la estabilidad del frente y el comportamiento del sostenimiento. Se aplican varias metodologías de fiabilidad — el Método de Fiabilidad de Primer Orden (FORM), el Método de Fiabilidad de Segundo Orden (SORM) y el Muestreo por Importancia (IS). Los resultados muestran que los tipos de distribución y las estructuras de correlación consideradas para todas las variables aleatorias tienen una influencia significativa en los resultados de fiabilidad, lo cual remarca la importancia de una adecuada caracterización de las incertidumbres geotécnicas en las aplicaciones prácticas. Los resultados también muestran que tanto el FORM como el SORM pueden emplearse para estimar la fiabilidad del sostenimiento de un túnel y que el SORM puede mejorar el FORM con un esfuerzo computacional adicional aceptable. Posteriormente, se desarrolla una metodología de linealización para evaluar la fiabilidad del sistema en los problemas geotécnicos. Esta metodología solamente necesita la información proporcionada por el FORM: el vector de índices de fiabilidad de las funciones de estado límite (LSFs) que componen el sistema y su matriz de correlación. Se analizan dos problemas geotécnicos comunes —la estabilidad de un talud en un suelo estratificado y un túnel circular excavado en roca— para demostrar la sencillez, precisión y eficiencia del procedimiento propuesto. Asimismo, se reflejan las ventajas de la metodología de linealización con respecto a las herramientas computacionales alternativas. Igualmente se muestra que, en el caso de que resulte necesario, se puede emplear el SORM —que aproxima la verdadera LSF mejor que el FORM— para calcular estimaciones más precisas de la fiabilidad del sistema. Finalmente, se presenta una nueva metodología que emplea Algoritmos Genéticos para identificar, de manera precisa, las superficies de deslizamiento representativas (RSSs) de taludes en suelos estratificados, las cuales se emplean posteriormente para estimar la fiabilidad del sistema, empleando la metodología de linealización propuesta. Se adoptan tres taludes en suelos estratificados característicos para demostrar la eficiencia, precisión y robustez del procedimiento propuesto y se discuten las ventajas del mismo con respecto a otros métodos alternativos. Los resultados muestran que la metodología propuesta da estimaciones de fiabilidad que mejoran los resultados previamente publicados, enfatizando la importancia de hallar buenas RSSs —y, especialmente, adecuadas (desde un punto de vista probabilístico) superficies de deslizamiento críticas que podrían ser no-circulares— para obtener estimaciones acertadas de la fiabilidad de taludes en suelos. Reliability analyses provide an adequate tool to consider the inherent uncertainties that exist in geotechnical parameters. This dissertation develops a simple linearization-based approach, that uses first or second order approximations, to efficiently evaluate the system reliability of geotechnical problems. First, reliability methods are employed to analyze the reliability of two tunnel design aspects: face stability and performance of support systems. Several reliability approaches —the first order reliability method (FORM), the second order reliability method (SORM), the response surface method (RSM) and importance sampling (IS)— are employed, with results showing that the assumed distribution types and correlation structures for all random variables have a significant effect on the reliability results. This emphasizes the importance of an adequate characterization of geotechnical uncertainties for practical applications. Results also show that both FORM and SORM can be used to estimate the reliability of tunnel-support systems; and that SORM can outperform FORM with an acceptable additional computational effort. A linearization approach is then developed to evaluate the system reliability of series geotechnical problems. The approach only needs information provided by FORM: the vector of reliability indices of the limit state functions (LSFs) composing the system, and their correlation matrix. Two common geotechnical problems —the stability of a slope in layered soil and a circular tunnel in rock— are employed to demonstrate the simplicity, accuracy and efficiency of the suggested procedure. Advantages of the linearization approach with respect to alternative computational tools are discussed. It is also found that, if necessary, SORM —that approximates the true LSF better than FORM— can be employed to compute better estimations of the system’s reliability. Finally, a new approach using Genetic Algorithms (GAs) is presented to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes, and such RSSs are then employed to estimate the system reliability of slopes, using our proposed linearization approach. Three typical benchmark-slopes with layered soils are adopted to demonstrate the efficiency, accuracy and robustness of the suggested procedure, and advantages of the proposed method with respect to alternative methods are discussed. Results show that the proposed approach provides reliability estimates that improve previously published results, emphasizing the importance of finding good RSSs —and, especially, good (probabilistic) critical slip surfaces that might be non-circular— to obtain good estimations of the reliability of soil slope systems.
Resumo:
Debido al gran incremento de datos digitales que ha tenido lugar en los últimos años, ha surgido un nuevo paradigma de computación paralela para el procesamiento eficiente de grandes volúmenes de datos. Muchos de los sistemas basados en este paradigma, también llamados sistemas de computación intensiva de datos, siguen el modelo de programación de Google MapReduce. La principal ventaja de los sistemas MapReduce es que se basan en la idea de enviar la computación donde residen los datos, tratando de proporcionar escalabilidad y eficiencia. En escenarios libres de fallo, estos sistemas generalmente logran buenos resultados. Sin embargo, la mayoría de escenarios donde se utilizan, se caracterizan por la existencia de fallos. Por tanto, estas plataformas suelen incorporar características de tolerancia a fallos y fiabilidad. Por otro lado, es reconocido que las mejoras en confiabilidad vienen asociadas a costes adicionales en recursos. Esto es razonable y los proveedores que ofrecen este tipo de infraestructuras son conscientes de ello. No obstante, no todos los enfoques proporcionan la misma solución de compromiso entre las capacidades de tolerancia a fallo (o de manera general, las capacidades de fiabilidad) y su coste. Esta tesis ha tratado la problemática de la coexistencia entre fiabilidad y eficiencia de los recursos en los sistemas basados en el paradigma MapReduce, a través de metodologías que introducen el mínimo coste, garantizando un nivel adecuado de fiabilidad. Para lograr esto, se ha propuesto: (i) la formalización de una abstracción de detección de fallos; (ii) una solución alternativa a los puntos únicos de fallo de estas plataformas, y, finalmente, (iii) un nuevo sistema de asignación de recursos basado en retroalimentación a nivel de contenedores. Estas contribuciones genéricas han sido evaluadas tomando como referencia la arquitectura Hadoop YARN, que, hoy en día, es la plataforma de referencia en la comunidad de los sistemas de computación intensiva de datos. En la tesis se demuestra cómo todas las contribuciones de la misma superan a Hadoop YARN tanto en fiabilidad como en eficiencia de los recursos utilizados. ABSTRACT Due to the increase of huge data volumes, a new parallel computing paradigm to process big data in an efficient way has arisen. Many of these systems, called dataintensive computing systems, follow the Google MapReduce programming model. The main advantage of these systems is based on the idea of sending the computation where the data resides, trying to provide scalability and efficiency. In failure-free scenarios, these frameworks usually achieve good results. However, these ones are not realistic scenarios. Consequently, these frameworks exhibit some fault tolerance and dependability techniques as built-in features. On the other hand, dependability improvements are known to imply additional resource costs. This is reasonable and providers offering these infrastructures are aware of this. Nevertheless, not all the approaches provide the same tradeoff between fault tolerant capabilities (or more generally, reliability capabilities) and cost. In this thesis, we have addressed the coexistence between reliability and resource efficiency in MapReduce-based systems, looking for methodologies that introduce the minimal cost and guarantee an appropriate level of reliability. In order to achieve this, we have proposed: (i) a formalization of a failure detector abstraction; (ii) an alternative solution to single points of failure of these frameworks, and finally (iii) a novel feedback-based resource allocation system at the container level. Finally, our generic contributions have been instantiated for the Hadoop YARN architecture, which is the state-of-the-art framework in the data-intensive computing systems community nowadays. The thesis demonstrates how all our approaches outperform Hadoop YARN in terms of reliability and resource efficiency.
Resumo:
El auge y penetración de las nuevas tecnologías junto con la llamada Web Social están cambiando la forma en la que accedemos a la medicina. Cada vez más pacientes y profesionales de la medicina están creando y consumiendo recursos digitales de contenido clínico a través de Internet, surgiendo el problema de cómo asegurar la fiabilidad de estos recursos. Además, un nuevo concepto está apareciendo, el de pervasive healthcare o sanidad ubicua, motivado por pacientes que demandan un acceso a los servicios sanitarios en todo momento y en todo lugar. Este nuevo escenario lleva aparejado un problema de confianza en los proveedores de servicios sanitarios. Las plataformas de eLearning se están erigiendo como paradigma de esta nueva Medicina 2.0 ya que proveen un servicio abierto a la vez que controlado/supervisado a recursos digitales, y facilitan las interacciones y consultas entre usuarios, suponiendo una buena aproximación para esta sanidad ubicua. En estos entornos los problemas de fiabilidad y confianza pueden ser solventados mediante la implementación de mecanismos de recomendación de recursos y personas de manera confiable. Tradicionalmente las plataformas de eLearning ya cuentan con mecanismos de recomendación, si bien están más enfocados a la recomendación de recursos. Para la recomendación de usuarios es necesario acudir a mecanismos más elaborados como son los sistemas de confianza y reputación (trust and reputation) En ambos casos, tanto la recomendación de recursos como el cálculo de la reputación de los usuarios se realiza teniendo en cuenta criterios principalmente subjetivos como son las opiniones de los usuarios. En esta tesis doctoral proponemos un nuevo modelo de confianza y reputación que combina evaluaciones automáticas de los recursos digitales en una plataforma de eLearning, con las opiniones vertidas por los usuarios como resultado de las interacciones con otros usuarios o después de consumir un recurso. El enfoque seguido presenta la novedad de la combinación de una parte objetiva con otra subjetiva, persiguiendo mitigar el efecto de posibles castigos subjetivos por parte de usuarios malintencionados, a la vez que enriquecer las evaluaciones objetivas con información adicional acerca de la capacidad pedagógica del recurso o de la persona. El resultado son recomendaciones siempre adaptadas a los requisitos de los usuarios, y de la máxima calidad tanto técnica como educativa. Esta nueva aproximación requiere una nueva herramienta para su validación in-silico, al no existir ninguna aplicación que permita la simulación de plataformas de eLearning con mecanismos de recomendación de recursos y personas, donde además los recursos sean evaluados objetivamente. Este trabajo de investigación propone pues una nueva herramienta, basada en el paradigma de programación orientada a agentes inteligentes para el modelado de comportamientos complejos de usuarios en plataformas de eLearning. Además, la herramienta permite también la simulación del funcionamiento de este tipo de entornos dedicados al intercambio de conocimiento. La evaluación del trabajo propuesto en este documento de tesis se ha realizado de manera iterativa a lo largo de diferentes escenarios en los que se ha situado al sistema frente a una amplia gama de comportamientos de usuarios. Se ha comparado el rendimiento del modelo de confianza y reputación propuesto frente a dos modos de recomendación tradicionales: a) utilizando sólo las opiniones subjetivas de los usuarios para el cálculo de la reputación y por extensión la recomendación; y b) teniendo en cuenta sólo la calidad objetiva del recurso sin hacer ningún cálculo de reputación. Los resultados obtenidos nos permiten afirmar que el modelo desarrollado mejora la recomendación ofrecida por las aproximaciones tradicionales, mostrando una mayor flexibilidad y capacidad de adaptación a diferentes situaciones. Además, el modelo propuesto es capaz de asegurar la recomendación de nuevos usuarios entrando al sistema frente a la nula recomendación para estos usuarios presentada por el modo de recomendación predominante en otras plataformas que basan la recomendación sólo en las opiniones de otros usuarios. Por último, el paradigma de agentes inteligentes ha probado su valía a la hora de modelar plataformas virtuales complejas orientadas al intercambio de conocimiento, especialmente a la hora de modelar y simular el comportamiento de los usuarios de estos entornos. La herramienta de simulación desarrollada ha permitido la evaluación del modelo de confianza y reputación propuesto en esta tesis en una amplia gama de situaciones diferentes. ABSTRACT Internet is changing everything, and this revolution is especially present in traditionally offline spaces such as medicine. In recent years health consumers and health service providers are actively creating and consuming Web contents stimulated by the emergence of the Social Web. Reliability stands out as the main concern when accessing the overwhelming amount of information available online. Along with this new way of accessing the medicine, new concepts like ubiquitous or pervasive healthcare are appearing. Trustworthiness assessment is gaining relevance: open health provisioning systems require mechanisms that help evaluating individuals’ reputation in pursuit of introducing safety to these open and dynamic environments. Technical Enhanced Learning (TEL) -commonly known as eLearning- platforms arise as a paradigm of this Medicine 2.0. They provide an open while controlled/supervised access to resources generated and shared by users, enhancing what it is being called informal learning. TEL systems also facilitate direct interactions amongst users for consultation, resulting in a good approach to ubiquitous healthcare. The aforementioned reliability and trustworthiness problems can be faced by the implementation of mechanisms for the trusted recommendation of both resources and healthcare services providers. Traditionally, eLearning platforms already integrate recommendation mechanisms, although this recommendations are basically focused on providing an ordered classifications of resources. For users’ recommendation, the implementation of trust and reputation systems appears as the best solution. Nevertheless, both approaches base the recommendation on the information from the subjective opinions of other users of the platform regarding the resources or the users. In this PhD work a novel approach is presented for the recommendation of both resources and users within open environments focused on knowledge exchange, as it is the case of TEL systems for ubiquitous healthcare. The proposed solution adds the objective evaluation of the resources to the traditional subjective personal opinions to estimate the reputation of the resources and of the users of the system. This combined measure, along with the reliability of that calculation, is used to provide trusted recommendations. The integration of opinions and evaluations, subjective and objective, allows the model to defend itself against misbehaviours. Furthermore, it also allows ‘colouring’ cold evaluation values by providing additional quality information such as the educational capacities of a digital resource in an eLearning system. As a result, the recommendations are always adapted to user requirements, and of the maximum technical and educational quality. To our knowledge, the combination of objective assessments and subjective opinions to provide recommendation has not been considered before in the literature. Therefore, for the evaluation of the trust and reputation model defined in this PhD thesis, a new simulation tool will be developed following the agent-oriented programming paradigm. The multi-agent approach allows an easy modelling of independent and proactive behaviours for the simulation of users of the system, conforming a faithful resemblance of real users of TEL platforms. For the evaluation of the proposed work, an iterative approach have been followed, testing the performance of the trust and reputation model while providing recommendation in a varied range of scenarios. A comparison with two traditional recommendation mechanisms was performed: a) using only users’ past opinions about a resource and/or other users; and b) not using any reputation assessment and providing the recommendation considering directly the objective quality of the resources. The results show that the developed model improves traditional approaches at providing recommendations in Technology Enhanced Learning (TEL) platforms, presenting a higher adaptability to different situations, whereas traditional approaches only have good results under favourable conditions. Furthermore the promotion period mechanism implemented successfully helps new users in the system to be recommended for direct interactions as well as the resources created by them. On the contrary OnlyOpinions fails completely and new users are never recommended, while traditional approaches only work partially. Finally, the agent-oriented programming (AOP) paradigm has proven its validity at modelling users’ behaviours in TEL platforms. Intelligent software agents’ characteristics matched the main requirements of the simulation tool. The proactivity, sociability and adaptability of the developed agents allowed reproducing real users’ actions and attitudes through the diverse situations defined in the evaluation framework. The result were independent users, accessing to different resources and communicating amongst them to fulfil their needs, basing these interactions on the recommendations provided by the reputation engine.
Resumo:
In this paper a consistent analysis of reinforced concrete (RC) two-dimensional (2-D) structures,namely slab structures subjected to in-plane and out-plane forces, is presented. By using this method of analysis the well established methodology for dimensioning and verifying RC sections of beam structures is extended to 2-D structures. The validity of the proposed analysis results is checked by comparing them with some published experimental test results. Several examples show some of these proposed analysis features, such as the influence of the reinforcement layout on the service and ultimate behavior of a slab structure and the non straightforward problem of the optimal dimension at a slab point subjected to several loading cases. Also, in these examples, the method applications to design situations as multiple steel families and non orthogonal reinforcement layout are commented.