34 resultados para Quality evaluation and certification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the design and application of the Atmospheric Evaluation and Research Integrated model for Spain (AERIS). Currently, AERIS can provide concentration profiles of NO2, O3, SO2, NH3, PM, as a response to emission variations of relevant sectors in Spain. Results are calculated using transfer matrices based on an air quality modelling system (AQMS) composed by the WRF (meteorology), SMOKE (emissions) and CMAQ (atmospheric-chemical processes) models. The AERIS outputs were statistically tested against the conventional AQMS and observations, revealing a good agreement in both cases. At the moment, integrated assessment in AERIS focuses only on the link between emissions and concentrations. The quantification of deposition, impacts (health, ecosystems) and costs will be introduced in the future. In conclusion, the main asset of AERIS is its accuracy in predicting air quality outcomes for different scenarios through a simple yet robust modelling framework, avoiding complex programming and long computing times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic evaluation of Learning Objects is essential to make high quality Web-based education possible. For this reason, several educational repositories and e-Learning systems have developed their own evaluation models and tools. However, the differences of the context in which Learning Objects are produced and consumed suggest that no single evaluation model is sufficient for all scenarios. Besides, no much effort has been put in developing open tools to facilitate Learning Object evaluation and use the quality information for the benefit of end users. This paper presents LOEP, an open source web platform that aims to facilitate Learning Object evaluation in different scenarios and educational settings by supporting and integrating several evaluation models and quality metrics. The work exposed in this paper shows that LOEP is capable of providing Learning Object evaluation to e-Learning systems in an open, low cost, reliable and effective way. Possible scenarios where LOEP could be used to implement quality control policies and to enhance search engines are also described. Finally, we report the results of a survey conducted among reviewers that used LOEP, showing that they perceived LOEP as a powerful and easy to use tool for evaluating Learning Objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La evaluación de ontologías, incluyendo diagnóstico y reparación de las mismas, es una compleja actividad que debe llevarse a cabo en cualquier proyecto de desarrollo ontológico para comprobar la calidad técnica de las ontologías. Sin embargo, existe una gran brecha entre los enfoques metodológicos sobre la evaluación de ontologías y las herramientas que le dan soporte. En particular, no existen enfoques que proporcionen guías concretas sobre cómo diagnosticar y, en consecuencia, reparar ontologías. Esta tesis pretende avanzar en el área de la evaluación de ontologías, concretamente en la actividad de diagnóstico. Los principales objetivos de esta tesis son (a) ayudar a los desarrolladores en el diagnóstico de ontologías para encontrar errores comunes y (b) facilitar dicho diagnóstico reduciendo el esfuerzo empleado proporcionando el soporte tecnológico adecuado. Esta tesis presenta las siguientes contribuciones: • Catálogo de 41 errores comunes que los ingenieros ontológicos pueden cometer durante el desarrollo de ontologías. • Modelo de calidad para el diagnóstico de ontologías alineando el catálogo de errores comunes con modelos de calidad existentes. • Diseño e implementación de 48 métodos para detectar 33 de los 41 errores comunes en el catálogo. • Soporte tecnológico OOPS!, que permite el diagnstico de ontologías de forma (semi)automática. De acuerdo con los comentarios recibidos y los resultados de los test de satisfacción realizados, se puede afirmar que el enfoque desarrollado y presentado en esta tesis ayuda de forma efectiva a los usuarios a mejorar la calidad de sus ontologías. OOPS! ha sido ampliamente aceptado por un gran número de usuarios de formal global y ha sido utilizado alrededor de 3000 veces desde 60 países diferentes. OOPS! se ha integrado en software desarrollado por terceros y ha sido instalado en empresas para ser utilizado tanto durante el desarrollo de ontologías como en actividades de formación. Abstract Ontology evaluation, which includes ontology diagnosis and repair, is a complex activity that should be carried out in every ontology development project, because it checks for the technical quality of the ontology. However, there is an important gap between the methodological work about ontology evaluation and the tools that support such an activity. More precisely, not many approaches provide clear guidance about how to diagnose ontologies and how to repair them accordingly. This thesis aims to advance the current state of the art of ontology evaluation, specifically in the ontology diagnosis activity. The main goals of this thesis are (a) to help ontology engineers to diagnose their ontologies in order to find common pitfalls and (b) to lessen the effort required from them by providing the suitable technological support. This thesis presents the following main contributions: • A catalogue that describes 41 pitfalls that ontology developers might include in their ontologies. • A quality model for ontology diagnose that aligns the pitfall catalogue to existing quality models for semantic technologies. • The design and implementation of 48 methods for detecting 33 out of the 41 pitfalls defined in the catalogue. • A system called OOPS! (OntOlogy Pitfall Scanner!) that allows ontology engineers to (semi)automatically diagnose their ontologies. According to the feedback gathered and satisfaction tests carried out, the approach developed and presented in this thesis effectively helps users to increase the quality of their ontologies. At the time of writing this thesis, OOPS! has been broadly accepted by a high number of users worldwide and has been used around 3000 times from 60 different countries. OOPS! is integrated with third-party software and is locally installed in private enterprises being used both for ontology development activities and training courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accreditation models in the international context mainly consider the evaluation of learning outcomes and the ability of programs (or higher education institutions) to achieve the educational objectives stated in their mission. However, it is not clear if these objectives and therefore their outcomes satisfy real national and regional needs, a critical point in engineering master's programs, especially in developing countries. The aim of this paper is to study the importance of the local relevancy evaluation of these programs and to analyze the main models of quality assurance and accreditation bodies of USA, Europe and Latin America, in order to ascertain whether the relevancy is evaluated or not. After a literature review, we found that in a free-market economic context and international education, the accreditation of master's programs follows an international accreditation model, and doesńt take in account in most cases criteria and indicators for local relevancy. It concludes that it is necessary both, international accreditation to ensure the effectiveness of the program (achievement of learning outcomes) and the national accreditation through which it could ensure local relevancy of programs, for which we are giving some indicators.