36 resultados para Piñeyrúa, María del Pilar


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinicians could model the brain injury of a patient through his brain activity. However, how this model is defined and how it changes when the patient is recovering are questions yet unanswered. In this paper, the use of MedVir framework is proposed with the aim of answering these questions. Based on complex data mining techniques, this provides not only the differentiation between TBI patients and control subjects (with a 72% of accuracy using 0.632 Bootstrap validation), but also the ability to detect whether a patient may recover or not, and all of that in a quick and easy way through a visualization technique which allows interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El ámbito del proyecto es la construcción, operación y transferencia de una Central Hidroeléctrica RenovAndes H1 y La Línea de Transmisión H1 con capacidad total de 60 kV mediante un transformador de 25 MVA de potencia, con un período de construcción de máximo 2 años y concesión de operación y mantenimiento a 20 años, como parte del Plan Nacional Estratégico para el Desarrollo del sector hidroeléctrico de Perú. El proyecto Línea de Transmisión 60 kV H1 – Chanchamayo se ubica en la zona central del Perú,políticamente en los distritos de Perené, Chanchamayo y San Ramón, provincia de Chanchamayo, departamento de Junín donde se encuentra a su paso el rio Huatziroki a aproximadamente 14 km aguas arriba de su confluencia con el rio Perené. Con este estudio se pretende evaluar los diferentes aspectos que influyen en la preparación de una oferta de licitación, incluye los análisis previos, el proceso de precalificación y la preparación de la oferta para la licitación.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of inclusion in the diet of different sources of soya bean meal (SBM) on growth performance, total tract apparent digestibility (TTAD) and apparent ileal digestibility (AID) of major dietary components and mucosal ileum morphology were studied in Iberian pigs weaned at 30 days of age. From 30 to 51 days of age (phase I), there was a control diet based on regular soya bean meal (R-SBM; 44% CP) of Argentina (ARG) origin and five extra diets in which a high-protein soya bean meal (HP-SBM; 49% CP) of the USA or ARG origin, either ground (990 ?m) or micronized (60 ?m), or a soya protein concentrate (SPC; 65% CP) substituted the R-SBM. From 51 to 61 days of age (phase II), all pigs were fed a common commercial diet in mash form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research studied the effects of additional fiber in the rearing phase diets on egg production, gastrointestinal tract (GIT) traits, and body measurements of brown egg-laying hens fed diets varying in energy concentration from 17 to 46 wk of age. The experiment was completely randomized with 10 treatments arranged as a 5 × 2 factorial with 5 rearing phase diets and 2 laying phase diets. During the rearing phase, treatments consisted of a control diet based on cereals and soybean meal and 4 additional diets with a combination of 2 fiber sources (cereal straw and sugar beet pulp, SBP) at 2 levels (2 and 4%). During the laying phase, diets differed in energy content (2,650 vs. 2,750 kcal AMEn/kg) but had the same amino acid content per unit of energy. The rearing diet did not affect any production trait except egg production that was lower in birds fed SBP than in birds fed straw (91.6 and 94.1%, respectively; P < 0.05). Laying hens fed the high energy diet had lower feed intake (P < 0.001), better feed conversion (P < 0.01), and greater BW gain (P < 0.05) than hens fed the low energy diet but egg production and egg weight were not affected. At 46 wk of age, none of the GIT traits was affected by previous dietary treatment. At this age, hen BW was positively related with body length (r = 0.500; P < 0.01), tarsus length (r = 0.758; P < 0.001), and body mass index (r = 0.762; P < 0.001) but no effects of type of diet on these traits were detected. In summary, the inclusion of up to 4% of a fiber source in the rearing diets did not affect GIT development of the hens but SBP reduced egg production. An increase in the energy content of the laying phase diet reduced ADFI and improved feed efficiency but did not affect any of the other traits studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMEN Su objetivo esencial: Regular el proceso de la edificación, está basado en 3 grandes pilares: 1.- Completar la configuración legal de los agentes que intervienen en el mismo, fijando sus obligaciones para así establecer las responsabilidades. 2.- Fomentar la calidad de los edificios. 3.- Fijar las garantías a los usuarios frente a los posibles daños. Estos tres fundamentos están intensamente relacionados, ya que, las obligaciones y responsabilidades de los agentes son la base de la constitución de las garantías a los usuarios, definidas mediante los requisitos básicos que deben satisfacer los edificios. Partiendo del análisis cualitativo y cuantitativo del grado de cumplimiento del objetivo de la nueva Ley, elaborado a través del estudio de sus tres pilares fundamentales, proponemos medidas tendentes a la plena entrada en vigor de la misma. Para ello se deberá desarrollar el Real Decreto previsto en la Disposición Adicional 2ª, una vez conseguido el grado de madurez de los sectores de la edificación y del seguro. En todo este proceso de estudio hemos podido apreciar que la objetiva identificación de los daños y en especial los que afectan la estabilidad del edificio, constituye una herramienta fundamental para la correcta atribución de responsabilidades a los agentes, basada en la aplicación de los tres grados de responsabilidad “ex lege” por daños materiales y sus plazos de prescripción surgidos del nuevo régimen impuesto por el art. 17 LOE Para avalar esta propuesta hemos analizado: 1.- El entorno económico, general y pormenorizado al sector de la edificación, en Europa y España durante el período comprendido entre los años 1990 y 2013, años previos y posteriores a la entrada en vigor de la Ley, dada la influencia de los ciclos de actividad producidos en la regulación del sector, las responsabilidades atribuidas a los agentes, el fomento de la calidad y las garantías ofrecidas a los adquirentes. 2.- Las diversas legislaciones sobre responsabilidades y garantías de los agentes de la edificación en los países de nuestro entorno económico. 3.- La gestación de la LOE, incidiendo en la evolución de los últimos borradores y su tramitación parlamentaria. 4.- El desarrollo doctrinal de la Transición desde el régimen de responsabilidades, fijado por el art. 1591 de Código Civil, y su Jurisprudencia, hacia el nuevo régimen de responsabilidades establecido por el art. 17 LOE. En esta tarea además de apreciar la asimilación, por parte de los Jueces y Magistrados, de los principios doctrinales de la LOE, hemos observado la labor de los peritos, de cuya experta identificación de las causas de los daños depende la justa y eficaz atribución de responsabilidades. 5 -. El grado de eficacia de la LOE a la vista de la estadística siniestral, de la que ya hay datos consolidados, tras la cancelación de casi 15.000 expedientes de reclamación a Arquitectos. 6 -. También hemos estudiado el grado de cumplimiento con el usuario y propietario de las garantías previstas en el art. 19 de la Ley y en la D.A. 1ª, los efectos reales alcanzados y las tareas pendientes por delante. Analizando la atribución de responsabilidades a los agentes de la edificación, dentro del primer pilar fundamental de la LOE, hemos estudiado las actuaciones de los peritos expertos y su incidencia en este objetivo, previa selección de casos de gran interés y dificultad. Fruto de ello se han formulado propuestas tendentes a la especialización de este colectivo, evitando conductas “irregulares” que tanto daño provocan a los agentes reclamados como a los propietarios afectados. Este daño es evidente pudiendo ocasionar condenas injustas, enriquecimientos ilícitos o bien falsas expectativas de satisfacción de daños mal dictaminados y costosas e ineficaces reparaciones. De cara a la consecución del pilar de la calidad de la edificación, mediante los requisitos básicos planteados por la LOE y desarrollados por el Código Técnico de la Edificación (Real Decreto 314/2006, de 17 de marzo), hemos procesado datos de expedientes de reclamaciones por daños que afectan a edificios ejecutados bajo el nuevo régimen LOE. Con esta base se han analizado las causas generadoras de las diversas lesiones y su frecuencia para que de este análisis puedan establecerse pautas de actuación para su prevención. Finalmente, tras demostrar que las garantías obligatorias impuestas por la LOE sólo abarcan un pequeño porcentaje de los posibles daños a la edificación, insistimos en la necesidad de la plena eficacia de la Ley mediante la aprobación de todas las garantías previstas y para todo tipo de edificaciones. En suma, se ha diseñado la tesis como una matriz abierta en la que podremos continuar incorporando datos de la evolución de la doctrina, la jurisprudencia y la estadística de los daños en la edificación. ABSTRACT The approval of Law 38/1999 on November 5, 1999, (Official Gazette BOE 266/1999 of 11.6.1999, p. 38925), was the culmination of a long period of over 20 years of gestation for which deep agreements were needed between all stakeholders affected. Although several parliamentary groups denounced its incomplete approval, regarding mandatory guarantees to the purchaser, its enactment caused general satisfaction among most of the the building agents. This assessment remains after fourteen years since its partial enactment. Its essential purpose, “to regulate the building process”, is based on 3 pillars: 1.- To complete the legal configuration of the agents involved in it, setting their obligations in order to establish their responsibilities. 2.- To promote the buildings quality. 3.- To specify users´guarantees against possible buildings damage. These three issues are strongly related, since the obligations and responsibilities of the actors are the basis of the users’guarantees constitution, defined by the basic performance required by buildings. Based on the qualitative and quantitative analysis of the fulfillment of the new law’s objectives, made by monitoring the three pillars, we propose measures to the full enactment of this Directive, by the development of the Royal Decree, provided in its Second Additional Provision, once maturity in the sectors of the building and insurance is achieved. Throughout this process of study we have seen that the skill identification of damage, particularly those affecting the stability of the building, is an essential tool for the proper allocation of responsibilities of the new regime installed by the art. 17 LOE, based on the application of the three degrees of responsibility "ex lege" for property damage and limitation periods. To support this proposal, we have analyzed: 1.- The evolution of the building sector in Europe and Spain during the years before and after the enactment of the Law, due to the influence of cycles of activity produced in industry regulation, the responsibilities attributed to agents, promotion of the quality and the assurances given to acquirers. 2.- The scope of various laws on liability and building agents warranties in the countries of our economic environment. 3.- The long period of LOE generation, focusing on the developments in recent drafts and parliamentary procedure. 4.- The doctrinal development in the Transition from the regime of responsibilities, set by art. 1591 of the Civil Code, and its Jurisprudence, to the new liability regime established by art. 17 LOE. In this task, while we have noted assimilation by the Judges and Magistrates of the doctrinal principles of the LOE, we have also analyzed the work of experts, whose skilled identification of the damage causes helps the fair and efficient allocation of responsibilities. 5 - The effectiveness of the LOE based on knowledge of the siniestral statistics, which are already consolidated data, after the cancellation of nearly 15,000 claims to Architects. 6.- We have also studied the degree of compliance with the user and owner guarantees, established in art. 19 and the D.A. 1th of the LOE, exposing the real effects achieved and the pending tasks ahead. Analyzing the allocation of the building agents´ responsibilities, within the first cornerstone of the LOE, we have studied the expert witnesses actions and their impact on this duty, selecting cases of great interest and difficulty in this aim. The result of this enterprise has been to propose the specialization of this group, avoiding "irregular" behaviors that create as much damage as the agents claimed to affected owners. This damage is evident and can cause wrong convictions, illicit enrichment, false expectations and inefficient and costly damage repairs. In order to achieve the pillar of building quality through the basic requirements set by the LOE and developed by the Technical Building Code (Royal Decree 314/ 2006 of 17 March), we have analyzed records of damage claims involving buildings executed under the new regime LOE. On this basis we have analyzed the root causes of various damages and their frequency, from these data it will be easy to propose lines of action for prevention. Finally, after demonstrating that mandatory warranties imposed by LOE cover only a small percentage of the potential building damage, we emphasize the need for the full effectiveness of the Law by the obligation all the guarantees provided in the art. 19 LOE, and for all types of buildings. In conclusion, this thesis is designed as an open matrix in which we will continue including data on the evolution of the doctrine, jurisprudence and the statistics of the damage to the building.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radon gas (Rn) is a natural radioactive gas present in some soils and able to penetrate buildings through the building envelope in contact with the soil. Radon can accumulate within buildings and consequently be inhaled by their occupants. Because it is a radioactive gas, its disintegration process produces alpha particles that, in contact with the lung epithelia, can produce alterations potentially giving rise to cancer. Many international organizations related to health protection, such as WHO, confirm this causality. One way to avoid the accumulation of radon in buildings is to use the building envelope as a radon barrier. The extent to which concrete provides such a barrier is described by its radon diffusion coefficient (DRn), a parameter closely related to porosity (ɛ) and tortuosity factor (τ). The measurement of the radon diffusion coefficient presents challenges, due to the absence of standard procedures, the requirement to establish adequate airtightness in testing apparatus (referred to here as the diffusion cell), and due to the fact that measurement has to be carried out in an environment certified for use of radon calibrated sources. In addition to this calibrated radon sources are costly. The measurement of the diffusion coefficient for non-radioactive gas is less complex, but nevertheless retains a degree of difficulty due to the need to provide reliably airtight apparatus for all tests. Other parameters that can characterize and describe the process of gas transport through concrete include the permeability coefficient (K) and the electrical resistivity (ρe), both of which can be measured relatively easily with standardized procedure. The use of these parameters would simplify the characterization of concrete behaviour as a radon barrier. Although earlier studies exist, describing correlation among these parameters, there is, as has been observed in the literature, little common ground between the various research efforts. For precisely this reason, prior to any attempt to measure radon diffusion, it was deemed necessary to carry out further research in this area, as a foundation to the current work, to explore potential relationships among the following parameters: porosity-tortuosity, oxygen diffusion coefficient, permeability coefficient and resistivity. Permeability coefficient measurement (m2) presents a more straightforward challenge than diffusion coefficient measurement. Some authors identify a relationship between both coefficients, including Gaber (1988), who proposes: k= a•Dn Equation 1 Where: a=A/(8ΠD020), A = sample cross-section, D020 = diffusion coefficient in air (m2/s). Other studies (Klink et al. 1999, Gaber and Schlattner 1997, Gräf and Grube et al. 1986), experimentally relate both coefficients of different types of concrete confirming that this relationship exists, as represented by the simplified expression: k≈Dn Equation 2 In each particular study a different value for n was established, varying from 1.3 to 2.5, but this requires determination of a value for n in a more general way because these proposed models cannot estimate diffusion coefficient. If diffusion coefficient has to be measured to be able to establish n, these relationships are not interesting. The measurement of electric resistivity is easier than diffusion coefficient measurement. Correlation between the parameters can be established via Einstein´s law that relates movement of electrical charges to media conductivity according to the expression: D_e=k/ρ Equation 3 Where: De = diffusion coefficient (cm2/s), K = constant, ρ = electric resistivity (Ω•cm). The tortuosity factor is used to represent the uneven geometry of concrete pores, which are described as being not straight, but tortuous. This factor was first introduced in the literature to relate global porosity with fluid transport in a porous media, and can be formulated in a number of different ways. For example, it can take the form of equation 4 (Mason y Malinauskas), which combines molecular and Knudsen diffusion using the tortuosity factor: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Equation 4 Where: r = medium radius obtained from MIP (µm), M = gas molecular mass, R = ideal gases constant, T = temperature (K), D0 = coefficient diffusion in the air (m2/s). Few studies provide any insight as to how to obtain the tortuosity factor. The work of Andrade (2012) is exceptional in this sense, as it outlines how the tortuosity factor can be deduced from pore size distribution (from MIP) from the equation: ∅_th=∅_0•ε^(-τ). Equation 5 Where: Øth = threshold diameter (µm), Ø0 = minimum diameter (µm), ɛ = global porosity, τ = tortuosity factor. Alternatively, the following equation may be used to obtain the tortuosity factor: DO2=D0*ɛτ Equation 6 Where: DO2 = oxygen diffusion coefficient obtained experimentally (m2/s), DO20 = oxygen diffusion coefficient in the air (m2/s). This equation has been inferred from Archie´s law ρ_e=〖a•ρ〗_0•ɛ^(-m) and from the Einstein law mentioned above, using the values of oxygen diffusion coefficient obtained experimentally. The principal objective of the current study was to establish correlations between the different parameters that characterize gas transport through concrete. The achievement of this goal will facilitate the assessment of the useful life of concrete, as well as open the door to the pro-active planning for the use of concrete as a radon barrier. Two further objectives were formulated within the current study: 1.- To develop a method for measurement of gas coefficient diffusion in concrete. 2.- To model an analytic estimation of radon diffusion coefficient from parameters related to concrete porosity and tortuosity factor. In order to assess the possible correlations, parameters have been measured using the standardized procedures or purpose-built in the laboratory for the study of equations 1, 2 y 3. To measure the gas diffusion coefficient, a diffusion cell was designed and manufactured, with the design evolving over several cycles of research, leading ultimately to a unit that is reliably air tight. The analytic estimation of the radon diffusion coefficient DRn in concrete is based on concrete global porosity (ɛ), whose values may be experimentally obtained from a mercury intrusion porosimetry test (MIP), and from its tortuosity factor (τ), derived using the relations expressed in equations 5 y 6. The conclusions of the study are: Several models based on regressions, for concrete with a relative humidity of 50%, have been proposed to obtain the diffusion coefficient following the equations K=Dn, K=a*Dn y D=n/ρe. The final of these three relations is the one with the determination coefficient closest to a value of 1: D=(19,997*LNɛ+59,354)/ρe Equation 7 The values of the obtained oxygen diffusion coefficient adjust quite well to those experimentally measured. The proposed method for the measurement of the gas coefficient diffusion is considered to be adequate. The values obtained for the oxygen diffusion coefficient are within the range of those proposed by the literature (10-7 a 10-8 m2/s), and are consistent with the other studied parameters. Tortuosity factors obtained using pore distribution and the expression Ø=Ø0*ɛ-τ are inferior to those from resistivity ρ=ρ0*ɛ-τ. The closest relationship to it is the one with porosity of pore diameter 1 µm (τ=2,07), being 7,21% inferior. Tortuosity factors obtained from the expression DO2=D0*ɛτ are similar to those from resistivity: for global tortuosity τ=2,26 and for the rest of porosities τ=0,7. Estimated radon diffusion coefficients are within the range of those consulted in literature (10-8 a 10-10 m2/s).ABSTRACT El gas radón (Rn) es un gas natural radioactivo presente en algunos terrenos que puede penetrar en los edificios a través de los cerramientos en contacto con el mismo. En los espacios interiores se puede acumular y ser inhalado por las personas. Al ser un gas radioactivo, en su proceso de desintegración emite partículas alfa que, al entrar en contacto con el epitelio pulmonar, pueden producir alteraciones del mismo causando cáncer. Muchos organismos internacionales relacionados con la protección de la salud, como es la OMS, confirman esta causalidad. Una de las formas de evitar que el radón penetre en los edificios es utilizando las propiedades de barrera frente al radón de su propia envolvente en contacto con el terreno. La principal característica del hormigón que confiere la propiedad de barrera frente al radón cuando conforma esta envolvente es su permeabilidad que se puede caracterizar mediante su coeficiente de difusión (DRn). El coeficiente de difusión de un gas en el hormigón es un parámetro que está muy relacionado con su porosidad (ɛ) y su tortuosidad (τ). La medida del coeficiente de difusión del radón resulta bastante complicada debido a que el procedimiento no está normalizado, a que es necesario asegurar una estanquidad a la celda de medida de la difusión y a que la medida tiene que ser realizada en un laboratorio cualificado para el uso de fuentes de radón calibradas, que además son muy caras. La medida del coeficiente de difusión de gases no radioactivos es menos compleja, pero sigue teniendo un alto grado de dificultad puesto que tampoco está normalizada, y se sigue teniendo el problema de lograr una estanqueidad adecuada de la celda de difusión. Otros parámetros que pueden caracterizar el proceso son el coeficiente de permeabilidad (K) y la resistividad eléctrica (ρe), que son más fáciles de determinar mediante ensayos que sí están normalizados. El uso de estos parámetros facilitaría la caracterización del hormigón como barrera frente al radón, pero aunque existen algunos estudios que proponen correlaciones entre estos parámetros, en general existe divergencias entre los investigadores, como se ha podido comprobar en la revisión bibliográfica realizada. Por ello, antes de tratar de medir la difusión del radón se ha considerado necesario realizar más estudios que puedan clarificar las posibles relaciones entre los parámetros: porosidad-tortuosidad, coeficiente de difusión del oxígeno, coeficiente de permeabilidad y resistividad. La medida del coeficiente de permeabilidad (m2) es más sencilla que el de difusión. Hay autores que relacionan el coeficiente de permeabilidad con el de difusión. Gaber (1988) propone la siguiente relación: k= a•Dn Ecuación 1 En donde: a=A/(8ΠD020), A = sección de la muestra, D020 = coeficiente de difusión en el aire (m2/s). Otros estudios (Klink et al. 1999, Gaber y Schlattner 1997, Gräf y Grube et al. 1986) relacionan de forma experimental los coeficientes de difusión de radón y de permeabilidad de distintos hormigones confirmando que existe una relación entre ambos parámetros, utilizando la expresión simplificada: k≈Dn Ecuación 2 En cada estudio concreto se han encontrado distintos valores para n que van desde 1,3 a 2,5 lo que lleva a la necesidad de determinar n porque no hay métodos que eviten la determinación del coeficiente de difusión. Si se mide la difusión ya deja de ser de interés la medida indirecta a través de la permeabilidad. La medida de la resistividad eléctrica es muchísimo más sencilla que la de la difusión. La relación entre ambos parámetros se puede establecer a través de una de las leyes de Einstein que relaciona el movimiento de cargas eléctricas con la conductividad del medio según la siguiente expresión: D_e=k/ρ_e Ecuación 3 En donde: De = coeficiente de difusión (cm2/s), K = constante, ρe = resistividad eléctrica (Ω•cm). El factor de tortuosidad es un factor de forma que representa la irregular geometría de los poros del hormigón, al no ser rectos sino tener una forma tortuosa. Este factor se introduce en la literatura para relacionar la porosidad total con el transporte de un fluido en un medio poroso y se puede formular de distintas formas. Por ejemplo se destaca la ecuación 4 (Mason y Malinauskas) que combina la difusión molecular y la de Knudsen utilizando el factor de tortuosidad: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Ecuación 4 En donde: r = radio medio obtenido del MIP (µm), M = peso molecular del gas, R = constante de los gases ideales, T = temperatura (K), D0 = coeficiente de difusión de un gas en el aire (m2/s). No hay muchos estudios que proporcionen una forma de obtener este factor de tortuosidad. Destaca el estudio de Andrade (2012) en el que deduce el factor de tortuosidad de la distribución del tamaño de poros (curva de porosidad por intrusión de mercurio) a partir de la ecuación: ∅_th=∅_0•ε^(-τ) Ecuación 5 En donde: Øth = diámetro umbral (µm), Ø0 = diámetro mínimo (µm), ɛ = porosidad global, τ = factor de tortuosidad. Por otro lado, se podría utilizar también para obtener el factor de tortuosidad la relación: DO2=D0*-τ Ecuación 6 En donde: DO2 = coeficiente de difusión del oxígeno experimental (m2/s), DO20 = coeficiente de difusión del oxígeno en el aire (m2/s). Esta ecuación está inferida de la ley de Archie ρ_e=〖a•ρ〗_0•ɛ^(-m) y la de Einstein mencionada anteriormente, utilizando valores del coeficiente de difusión del oxígeno DO2 obtenidos experimentalmente. El objetivo fundamental de la tesis es encontrar correlaciones entre los distintos parámetros que caracterizan el transporte de gases a través del hormigón. La consecución de este objetivo facilitará la evaluación de la vida útil del hormigón así como otras posibilidades, como la evaluación del hormigón como elemento que pueda ser utilizado en la construcción de nuevos edificios como barrera frente al gas radón presente en el terreno. Se plantean también los siguientes objetivos parciales en la tesis: 1.- Elaborar una metodología para la medida del coeficiente de difusión de los gases en el hormigón. 2.- Plantear una estimación analítica del coeficiente de difusión del radón a partir de parámetros relacionados con su porosidad y su factor de tortuosidad. Para el estudio de las correlaciones posibles, se han medido los parámetros con los procedimientos normalizados o puestos a punto en el propio Instituto, y se han estudiado las reflejadas en las ecuaciones 1, 2 y 3. Para la medida del coeficiente de difusión de gases se ha fabricado una celda que ha exigido una gran variedad de detalles experimentales con el fin de hacerla estanca. Para la estimación analítica del coeficiente de difusión del radón DRn en el hormigón se ha partido de su porosidad global (ɛ), que se obtiene experimentalmente del ensayo de porosimetría por intrusión de mercurio (MIP), y de su factor de tortuosidad (τ), que se ha obtenido a partir de las relaciones reflejadas en las ecuaciones 5 y 6. Las principales conclusiones obtenidas son las siguientes: Se proponen modelos basados en regresiones, para un acondicionamiento con humedad relativa de 50%, para obtener el coeficiente de difusión del oxígeno según las relaciones: K=Dn, K=a*Dn y D=n/ρe. La propuesta para esta última relación es la que tiene un mejor ajuste con R2=0,999: D=(19,997*LNɛ+59,354)/ρe Ecuación 7 Los valores del coeficiente de difusión del oxígeno así estimados se ajustan a los obtenidos experimentalmente. Se considera adecuado el método propuesto de medida del coeficiente de difusión para gases. Los resultados obtenidos para el coeficiente de difusión del oxígeno se encuentran dentro del rango de los consultados en la literatura (10-7 a 10-8 m2/s) y son coherentes con el resto de parámetros estudiados. Los resultados de los factores de tortuosidad obtenidos de la relación Ø=Ø0*ɛ-τ son inferiores a la de la resistividad (ρ=ρ0*ɛ-τ). La relación que más se ajusta a ésta, siendo un 7,21% inferior, es la de la porosidad correspondiente al diámetro 1 µm con τ=2,07. Los resultados de los factores de tortuosidad obtenidos de la relación DO2=D0*ɛτ son similares a la de la resistividad: para la porosidad global τ=2,26 y para el resto de porosidades τ=0,7. Los coeficientes de difusión de radón estimados mediante estos factores de tortuosidad están dentro del rango de los consultados en la literatura (10-8 a 10-10 m2/s).