35 resultados para Ordenes y congregaciones religiosas-España-S. XVIII


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La infiltración de agua en el suelo y la recarga profunda del agua subterránea contenida en los acuíferos es un proceso lento en relación con otros fenómenos hidrológicos. La redacción de esta tesis ha pretendido contribuir al estudio de la influencia que el almacenamiento de la precipitación sólida en forma de manto de nieve y su eventual fusión puedan tener sobre dicho proceso en áreas de media montaña (1.000 – 2.000 m.) en las que con gran frecuencia se sitúan las cabeceras de los ríos peninsulares. Para ello se ha partido del análisis de las diferentes variables intervinientes durante un determinado periodo temporal y sobre un espacio geográfico concreto, por lo que su metodología es de naturaleza empírica. La extensión del periodo (2002/03 a 2010/11) ha venido condicionada por la disponibilidad de los valores de algunas de sus principales variables, como han sido el equivalente en agua de la nieve acumulada y los caudales procedentes de su fusión. Éstos se han obtenido como resultado de la aplicación del modelo ASTER, desarrollado en el programa de Evaluación de los Recursos Hídricos procedentes de la Innivación (ERHIN), calibrado – entre otros- con datos de precipitaciones, temperatura y caudales provenientes a su vez del Sistema Automático de Información Hidrológica (SAIH). Ambos programas fueron implantados por la Administración en las diferentes Confederaciones Hidrográficas y en determinados Organismos de cuenca actuales, en cuyo desarrollo participó el autor de esta tesis. En cuanto a la zona de estudio se ha procedido a su elección considerando las posibles áreas de media montaña en las que la presencia de la nieve fuera hidrológicamente significativa y estuvieran constituidas litológicamente por afloramientos permeables que no impidieran la infiltración en el terreno y la formación de acuíferos de cierta relevancia. El interés se centró discrecionalmente en la cuenca del Tajo, tanto por el carácter estratégico de la misma -como suministradora en la actualidad de excedentes a otras cuencas deficitarias- como por el valor representativo de sus condiciones climáticas y orográficas en relación con otras cuencas hidrográficas peninsulares. Para ello se partió de las cabeceras de ríos identificadas por el programa ERHIN por su interés nivológico para la implantación del modelo ASTER y de las Masas de Agua Subterráneas MASb (antes Unidades Hidrogeológicas UUHH) definidas en los planes hidrológicos. La intersección en el territorio de ambos criterios condujo, finalmente, a la zona del Alto Tajo, en la que se cumplen ambos requisitos. El tramo quedó concretado en el comprendido entre las cabeceras de los ríos Tajo y Guadiela y la cola de los embalses de Entrepeñas y Buendía respectivamente, puntos de cierre para la calibración llevada a cabo en la modelización ASTER. Gran parte de éste discurre, en su parte alta, sobre rocas carbonatadas (calizas y dolomías del Jurásico y Cretácico), relacionados con las MASb de Tajuña-Montes Universales, Molina de Aragón y Sigüenza-Maranchón. Los valores diarios de las reservas de agua en forma de nieve, evapotranspiración y caudales procedentes de la fusión se han obtenido a partir de los resultados del mencionado modelo, procediéndose al cálculo de la infiltración por balance hídrico durante el periodo de estudio considerado, teniendo en cuenta los valores de precipitación, evapotranspiración y aportaciones de caudales. Esto ha requerido el estudio previo de las condiciones hidrogeológicas de la zona seleccionada con objeto de conocer las posibles interconexiones subterráneas que pudieran alterar los saldos entre las variables intervinientes anteriormente citadas. Para ello se ha llevado a cabo la recopilación y análisis de la información hidrogeológica correspondiente a la documentación de los planes hidrológicos del Tajo (Plan Hidrológico de la cuenca del Tajo RD 1664/1998 y el actual Plan Hidrológico de la parte española de la Demarcación Hidrográfica del Tajo RD 270/2014) y de los estudios previos realizados por el organismo de cuenca y el Instituto Geológico y Minero de España (lGME) fundamentalmente. En relación con la MASb Tajuña-Montes Universales -cuya extensión supera la zona seleccionada- dichos estudios consideran su estructura geológica y distribución litológica, con intercalaciones impermeables que actúan como barreras, dividiendo a éstas en Subunidades e identificando las zonas de drenaje de sus respectivos acuíferos. También se ha considerado la documentación y estudios previos del Plan Hidrológico Nacional sobre las Unidades Hidrogeológicas compartidas entre ámbitos geográficos de diferentes planes hidrológicos. Se concluye que las divisorias hidrográficas de las cabeceras son sensiblemente coincidentes o abarcan las Subunidades Montes Universales meridionales, Priego, Cifuentes, Zaorejas, u Montes Universales septentrionales, que drenan hacia el Tajo/Guadiela (bien directamente, bien a través de afluentes como el Gallo, Ablanquejo, Cabrillas, Cuervo…), MASb Molina de Aragón, que drena al Tajo a través del río Gallo y MASb Sigüenza—Maranchón, que drena su parte correspondiente hacia el Tajo a través del Ablanquejo. Se descartan – salvo la pequeña salvedad del manantial de Cifuentes- las conexiones hidrogeológicas con otras MASb o Subunidades por lo que las cabeceras del Tajo y del Guadiela pueden considerarse como un Sistema independiente donde las precipitaciones no evaporadas escurren superficialmente o se infiltran y descargan hacia los embalses de Entrepeñas y Buendía. La cuantificación diaria y acumulada de los balances hídricos ha permitido calcular la evolución aproximada de las reservas de agua subterránea desde la fecha inicial. Originalmente los balances se realizaron de forma separada en las cabeceras del Tajo y del Guadiela, cuyos valores acumulados manifestaron una tendencia creciente en la primera y decreciente en la segunda. Dicha situación se equilibra cuando el balance se practica conjuntamente en ambas, apreciándose en la variación del volumen de agua subterránea una evolución acorde hidrológicamente con los ciclos de verano/invierno y periodos de sequía, manteniéndose sus valores medios a largo/medio plazo, poniendo en evidencia la existencia de interconexiones subterráneas entre ambas cuencas. El balance conjunto, agregando la cabecera del Tajuña (que también comparte los materiales permeables de la MASb Tajuña-Montes Universales) no reveló la existencia de nuevas interrelaciones hidrogeológicas que influyeran en los balances hídricos realizados Tajo/Guadiela, confirmando las conclusiones de los estudios hidrogeológicos anteriormente analizados. Se ha procedido a confrontar y validar los resultados obtenidos de la evolución de las reservas de agua subterránea mediante los siguientes procedimientos alternativos: - Cálculo de los parámetros de desagüe de la curva de agotamiento correspondiente al volumen de agua subterránea drenante hacia el Tajo/Guadiela. Éste se ha realizado a partir de las aportaciones mensuales entrantes en los embalses de Entrepeñas y Buendía durante los meses de junio, julio, agosto y septiembre, cuyos valores responden al perfil típico de descargas de un acuífero. A partir de éstos se ha determinado el volumen drenante correspondiente al primero de junio de cada año de la serie histórica considerada. - Determinación del caudal base por el método Wallingford y deducción de los volúmenes drenantes. Estimación de las recarga anuales - Cuantificación de la recarga anual por el método Sanz, Menéndez Pidal de Navascués y Távara. Se obtuvieron valores de recarga muy aproximados entre los calculados por los dos últimos procedimientos citados. Respecto a las reservas de agua subterránea almacenadas siguen una evolución semejante en todos los casos, lo que ha permitido considerar válidos los resultados conseguidos mediante balance hídrico. Confirmada su solidez, se han buscado correlaciones simples entre el volumen de las reservas subterráneas (como indicador estimativo del efecto de la infiltración) y los volúmenes procedentes de la fusión. La conclusión es que estos últimos no tienen un efecto determinante a escala anual sobre la infiltración,recarga y variación de los volúmenes de agua subterránea, frente al peso de otras variables (precipitación y evapotranspiración). No obstante se ha encontrado una buena correlación múltiple entre la recarga estimada y la precipitación eficaz (precipitación menos evapotranspiración) y fusión, que ha permitido cuantificar la contribución de esta última. Posteriormente se ha recurrido a la selección de los episodios más intensos de acumulación /fusión en las cabeceras del Tajo y Guadiela. Y se procedió a la comparación entre los resultados obtenidos por aplicación del modelo de simulación en los mismos periodos (normalmente de varios días de duración) con datos reales y con datos ficticios de temperatura que anularan o disminuyeran la presencia de nieve, apreciándose una gran sensibilidad del efecto de la temperatura sobre la evapotranspiración y estableciéndose nuevamente correlaciones lineales entre los volúmenes de fusión y el incremento de reservas subterráneas. Las mismas confirman el efecto “favorecedor” de la acumulación de agua en forma de nieve y su posterior licuación, sobre sobre la infiltración de agua en el suelo y almacenamiento subterráneo. Finalmente se establecieron varios escenarios climáticos (+1ºC; +3ºC; +1ºC y – 10% precipitación; y 3ºC – 10% precipitación) compatibles con las previsiones del IPCC para mediados y finales del presente siglo, determinándose mediante simulación ASTER los correspondientes valores de fusión. La correlación establecida a escala anual ha permitido evaluar el efecto de la disminución del volumen de fusión - en los diferentes escenarios – sobre la recarga, pronosticando un descenso de los caudales de estiaje y la desaparición del “efecto nieve” sobre la infiltración y recarga con un aumento de 3ºC de temperatura. Teniendo en cuenta las condiciones de representatividad de la zona elegida, resulta verosímil la extensión de las anteriores conclusiones a otras cabeceras fluviales enclavadas en áreas de media montaña situadas entre 1000 a 2000m y sus efectos aguas abajo.Water infiltration into the soil and groundwater recharge deep water in aquifers is slow relative to other hydrological phenomena. The wording of this thesis aims to contribute to the study of the influence that the storage of solid precipitation as snow cover and its eventual melting may have on this process in mid-mountain areas (1000 - 2,000 m) where very often the headwaters of the peninsular rivers are located. For this party analysis of the different variables involved has over a given time period and a particular geographical area, so that their methodology is empirical in nature. The extension of the period (2002/03 to 2010/11) has been conditioned by the availability of the values of some of its key variables, as were the water equivalent of the snow and flows from melting. These have been obtained as a result of the application of ASTER model, developed in the program Evaluation of Water Resources from the Innivation (ERHIN), calibrated - among others data of rainfall, temperature and flow from turn System Automatic Hydrological Information (SAIH). Both programs were implemented by the Administration in the different Water Boards and to undertakings for current basin, in which the author participated development of this thesis. As for the study area has proceeded at its option considering the possible areas of midmountain in the presence of snow outside hydrological meaningful and they were lithology consisting of permeable outcrops that did not prevent infiltration into the ground and forming aquifers of some significance. We were interested discretion in the Tagus basin, therefore the strategic nature of it, as currently supplying surplus to other basins deficit- as the representative value of its climate and terrain conditions in relation to other peninsular river basins . To do this we started from the headwaters identified by the ERHIN program for its implementation snow interest to the ASTER model and Ground Water Bodies MASb (before UUHH Hydrogeological Units) defined in hydrological plans. The intersection in the territory of both criteria led eventually to the Alto Tajo, in which both requirements are met. The section was finalized in the period between the headwaters of the Tagus and Guadiela rivers and reservoirs end Entrepeñas and Buendia respectively checking points for calibration performed in ASTER modeling. Much of it runs on carbonate rocks (limestones and dolomites of Jurassic and Cretaceous) related MASb of Tajuña -Montes Universal, Molina de Aragón and Sigüenza-Maranchón. The daily values of water reserves in the form of snow, evapotranspiration and flow from melting were obtained from the results of this model, proceeding to the calculation of infiltration water balance during the study period considered, taking into account values of precipitation, evapotranspiration and input flow. This has required the prior examination of the hydrogeological conditions of your required in order to know the possible underground interconnections that could alter the balance between the intervening variables aforementioned area. For this we have carried out the collection and analysis of hydrogeological information relevant documentation Tagus river management plans (Hydrological Plan Tajo Basin RD 1664/1998 and the current Hydrological Plan of the Spanish part of the River Basin Tagus RD 270/2014) and previous studies by the basin organization and the Geological Survey of Spain (IGME) mainly. Regarding the MASb Tajuña- Montes Universal - whose length exceeds the area selected - these studies consider its geological structure and lithology distribution with waterproof collations that act as barriers, dividing it into subunits and identifying areas draining their respective aquifers. It has also considered the documentation and previous studies of the National Hydrological Plan on shared among different geographical areas management plans Hydrogeological Units. We conclude that river dividing the headers are substantially coincident or covering Subunits southern Universal Montes, Priego Cifuentes, Zaorejas and northern Universal Mounts, which drain into the Tagus / Guadiela (either directly or through tributaries such as Gallo, Ablanquejo , whitecaps , Raven ...), MASb Molina de Aragón which drains through the Tajo del Gallo and MASb Sigüenza- Maranchón river that drains into the Tagus using the Ablanquejo . Discarded - except the small exception of spring Cifuentes -hydrogeological connections with other MASb or Subunits so the headwaters of the Tagus and Guadiela be considered as a separate system, where rainfall not evaporated runs on surface or infiltrates and eventually discharged into reservoirs Entrepeñas and Buendia. The daily and cumulative quantification of water balances allowed us to compute the approximate evolution of groundwater reserves from its initial date. Initially balances were performed separately in the headwaters of the Tagus and Guadiela, whose cumulative values showed an increasing trend in the first and decreasing in the second. This situation is balanced when the balance is practiced together in both , appreciating the change in volume of groundwater hydrological evolution commensurate with the cycles of summer / winter and drought periods , keeping their average long / medium term values and putting in shows the existence of underground interconnections between the two basins. The overall balance, adding header Tajuña (which also shares the permeable materials MASb Tajuña -Montes Universal ) did not reveal the existence of new hydrogeological interrelationships that influenced water balances made Tajo / Guadiela, confirming the findings of the hydrogeological studies previously analyzed. We proceeded to confront and validate the results of the evolution of groundwater reserves by the following alternative procedures: - Calculate the parameters drain depletion curve corresponding to the volume of groundwater draining into the Tajo / Guadiela. This has been made from monthly inflows in the reservoirs of Entrepeñas and Buendia during the months of June, July, August and September, whose values match the typical profile of an aquifer discharges. From these has been determined for the first of June each year of the time series considered drainage volume - Determination of base flow by Wallingford method and deduction of drainage volumes. Estimate of annual recharge - Quantification of the annual recharge by the method Sanz Menéndez Pidal of Navascués and Távara. Very approximate values recharge between calculated for the last two mentioned methods were obtained. Concerning groundwater reserves stored follow a similar pattern in all cases, allowing consider valid the results achieved through water balance. Confirmed its robustness, simple correlations were sought between the volume of groundwater reserves (as estimated indicator of the effect of infiltration) and volumes from the melting. The conclusion is that the latter do not have a decisive effect on the annual scale infiltration, recharge and variation in volumes of groundwater, against the weight of other variables (precipitation and evapotranspiration). However found a good multiple correlation between the estimated recharge and effective precipitation (precipitation minus evapotranspiration) and fusion, which allowed quantify the contribution of the latter. Subsequently it has resorted to the selection of the most intense episodes of accumulation / melting in the headwaters of the Tagus and Guadiela. And we proceeded to the comparison between the results obtained by application of the simulation model in the same periods (usually several days) with real data and fictitious temperature data to annul or decrease the presence of snow, appreciating a great sensitivity of the effect of temperature on evapotranspiration and establishing linear correlations between the volumes of melting and increased groundwater reserves again. They confirm the “flattering " effect of water accumulation as snow and subsequent liquefaction of the infiltration of water into the soil and underground storage. Finally various climate scenarios (+1ºC; +3ºC; +1ºC y – 10% precipitation; y 3ºC – 10% precipitation) were established consistent with IPCC projections for mid - to late - century, determined through simulation ASTER corresponding values of melting. The correlation established on an annual scale has allowed to evaluate the effect of decreasing the volume of melt - in different scenarios - on recharge, predicting a decline in low flows and the disappearance of "snow effect" on infiltration and recharge with an increase of 3°C temperature. Given the conditions of representativeness of the chosen area, plausible extension of the above findings to other landlocked headwaters in mid-mountain areas located between 1000 to 2000m and its downstream effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El proyecto tiene por objeto la realización de los estudios técnicos, económicos y de mercado necesarios para definir la estrategia de creación de un Centro Tecnológico en Puertollano (Ciudad Real), ya que no existe en Castilla-La Mancha y tampoco en España un Laboratorio de estas características que trate conjuntamente campos muy demandados por los sectores de las Energías Renovables y la Industria Energética, lo que potenciará en un futuro inmediato un importante campo de negocio. Con el propósito de tener una estrategia adecuada en el desarrollo e implantación de este Centro se ha realizado un estudio de la optimización de los servicios a prestar mediante la implantación de Sistemas de Gestión de Calidad y Sistemas de Gestión de Actividades de Investigación, Desarrollo e Innovación (I+D+I) en relación con la actividad del negocio y fomentar en este aspecto la colaboración de las Administraciones y Universidades. El déficit en la competitividad de la economía española afecta a los conceptos íntimamente ligados de calidad y seguridad. Las exigencias cada vez mayores de seguridad y controles metrológicos de normativas europeas en el uso de energías, combustibles e industria, prevén un horizonte muy interesante para los servicios colaterales del Control de Calidad. ABSTRACT The main objetive of this project is to make a technical, economical and marketing study to define the creation strategy of a Technological Centre in Puertollano (Ciudad Real), since there is none in Castilla-La Mancha, or in Spain. Such laboratory would jointly manage fields of high demand by the Renevable Energy Industry sectors, that would enable the development of an important business field. With the purpose of having an appropriate strategy for the development and implementation of this centre, a service optimization study has been made, using the Quality Management Investigation, and ID Systems. This is related to business activities and seeks to foment the colaboration with the Administration and universities. The competitiviness déficit of the Spanish Economy, affects some closely related concepts of quality and security. The constantly growing requirements of security and metrological controls, due to energy, fuel and industry european laws, anticípate an interesting progress for the colateral services of Quality Control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La competitividad del transporte de mercancías depende del estado y funcionamiento de las redes existentes y de sus infraestructuras, no del modo de transporte. En concreto, la rentabilidad o la reducción de los costes de producción del transporte marítimo se vería incrementado con el uso de buques de mayor capacidad y con el desarrollo de plataformas portuarias de distribución o puertos secos, ya que el 90% del comercio entre la Unión Europea y terceros países se realiza a través de sus puertos a un promedio de 3,2 billones de toneladas de mercancías manipuladas cada año y el 40% del tráfico intraeuropeo utiliza el transporte marítimo de corta distancia. A pesar de que los puertos europeos acogen anualmente a más de 400 millones de pasajeros, los grandes desarrollos se han producido en los puertos del norte de Europa (Róterdam, Amberes, Ámsterdam). Los países del Sur de Europa deben buscar nuevas fórmulas para ser más competitivos, ya sea mediante creación de nuevas infraestructuras o mediante refuerzo de las existentes, ofreciendo los costes de los puertos del Norte. El fomento del transporte marítimo y fluvial como alternativa al transporte por carretera, especialmente el transporte marítimo de corta distancia, ha sido impulsado por la Comisión Europea (CE) desde 2003 a través de programas de apoyo comunitario de aplicación directa a las Autopistas del Mar, a modo de ejemplo, cabría citar los programas Marco Polo I y II, los cuales contaron con una dotación presupuestaria total de 855 millones de euros para el período 2003 – 2013; en ese período de tiempo se establecieron objetivos de reducción de congestión vial y mejora del comportamiento medio ambiental del sistema de transporte de mercancías dentro de la comunidad y la potenciación de la intermodalidad. El concepto de Autopista del Mar surge en el Libro Blanco de Transportes de la Comisión Europea “La política europea de transportes de cara al 2010: La hora de la verdad” del 12 de diciembre de 2001, en el marco de una política europea para fomento y desarrollo de sistemas de transportes sostenibles. Las Autopistas del Mar consisten en rutas marítimas de corta distancia entre dos puntos, de menor distancia que por vía terrestre, en las que a través del transporte intermodal mejoran significativamente los tiempos y costes de la cadena logística, contribuyen a la reducción de accidentes, ruidos y emisiones de CO2 a la atmósfera, permite que los conductores pierdan horas de trabajo al volante y evita el deterioro de las infraestructuras terrestres, con el consiguiente ahorro en mantenimiento. La viabilidad de una Autopista del Mar depende tanto de factores de ubicación geográficos, como de características propias del puerto, pasando por los diferentes requerimientos del mercado en cada momento (energéticos, medio ambientales y tecnológicos). Existe un elemento nuevo creado por la Comisión Europea: la red transeuropea de transportes (RTE-T). En el caso de España, con sus dos accesos por los Pirineos (La Junquera e Irún) como únicos pasos terrestres de comunicación con el continente y con importantes limitaciones ferroviarias debido a los tres anchos de vía distintos, le resta competitividad frente al conjunto europeo; por el contrario, España es el país europeo con más kilómetros de costa (con más de 8.000 km) y con un emplazamiento geográfico estratégico, lo que le convierte en una plataforma logística para todo el sur de Europa, por lo que las Autopistas del Mar tendrán un papel importante y casi obligado para el desarrollo de los grandes corredores marítimos que promueve Europa. De hecho, Gijón y Vigo lo han hecho muy bien con sus respectivas líneas definidas como Autopistas del Mar y que conectan con el puerto francés de Nantes-Saint Nazaire, ya que desde ahí los camiones pueden coger rutas hacia el Norte. Paralelamente, la Unión Europea ha iniciado los pasos para el impulso de la primera Autopista del Mar que conectará España con el mercado de Reino Unido, concretamente los Puertos de Bilbao y Tilbury. Además, España e Italia sellaron un acuerdo internacional para desarrollar Autopistas del Mar entre ambos países, comprometiéndose a impulsar una docena de rutas entre puertos del litoral mediterráneo español y el italiano. Actualmente, están en funcionando los trayectos como Barcelona-Génova, Valencia-Civitavecchia y Alicante- Nápoles, notablemente más cortos por mar que por carretera. Bruselas identificó cuatro grandes corredores marítimos que podrían concentrar una alta densidad de tráfico de buques, y en dos de ellos España ya tenía desde un principio un papel crucial. La Comisión diseñó el 14 de abril de 2004, a través del proyecto West-Mos, una red de tráfico marítimo que tiene como vías fundamentales la denominada Autopista del Báltico (que enlaza Europa central y occidental con los países bálticos), la Autopista de Europa suroriental (que une el Adriático con el Jónico y el Mediterráneo más oriental) y también la Autopista de Europa occidental y la Autopista de Europa suroccidental (que enlazan España con Reino Unido y la Francia atlántica y con la Francia mediterránea e Italia, respectivamente). Para poder establecer Autopistas del Mar entre la Península Ibérica y el Norte de Europa primará especialmente la retirada de camiones en la frontera pirenaica, donde el tráfico pesado tiene actualmente una intensidad media diaria de 8.000 unidades, actuando sobre los puntos de mayor congestión, como por ejemplo los Alpes, los Pirineos, el Canal de la Mancha, las carreteras fronterizas de Francia y Euskadi, y proponiendo el traslado de las mercancías en barcos o en trenes. Por su parte, para contar con los subsidios y apoyos europeos las rutas seleccionadas como Autopistas del Mar deben mantener una serie de criterios de calidad relacionados con la frecuencia, coste “plataforma logística a plataforma logística”, simplicidad en procedimientos administrativos y participación de varios países, entre otros. Los estudios consideran inicialmente viables los tramos marítimos superiores a 450 millas, con un volumen de unas 15.000 plataformas al año y que dispongan de eficientes comunicaciones desde el puerto a las redes transeuropeas de autopistas y ferrocarril. Otro objetivo de las Autopistas del Mar es desarrollar las capacidades portuarias de forma que se puedan conectar mejor las regiones periféricas a escala del continente europeo. En lo que a Puertos se refiere, las terminales en los muelles deben contar con una línea de atraque de 250 m., un calado superior a 8 m., una rampa “ro-ro” de doble calzada, grúas portainer, y garantizar operatividad para un mínimo de dos frecuencias de carga semanales. El 28 de marzo de 2011 se publicó el segundo Libro Blanco sobre el futuro del transporte en Europa “Hoja de ruta hacia un espacio único europeo de transporte: por una política de transportes competitiva y sostenible”, donde se definió el marco general de las acciones a emprender en los próximos diez años en el ámbito de las infraestructuras de transporte, la legislación del mercado interior, la reducción de la dependencia del carbono, la tecnología para la gestión del tráfico y los vehículos limpios, así como la estandarización de los distintos mercados. Entre los principales desafíos se encuentran la eliminación de los cuellos de botella y obstáculos diversos de nuestra red europea de transporte, minimizar la dependencia del petróleo, reducir las emisiones de GEI en un 60% para 2050 con respecto a los niveles de 1990 y la inversión en nuevas tecnologías e infraestructuras que reduzcan estas emisiones de transporte en la UE. La conexión entre la UE y el norte de África provoca elevados niveles de congestión en los puntos más críticos del trayecto: frontera hispano-francesa, corredor del Mediterráneo y el paso del estrecho. A esto se le añade el hecho de que el sector del transporte por carretera está sujeto a una creciente competencia de mercado motivada por la eliminación de las barreras europeas, mayores exigencias de los cargadores, mayores restricciones a los conductores y aumento del precio del gasóleo. Por otro lado, el mercado potencial de pasajeros tiene una clara diferenciación en tipos de flujos: los flujos en el período extraordinario de la Operación Paso del Estrecho (OPE), enfocado principalmente a marroquíes que vuelven a su país de vacaciones; y los flujos en el período ordinario, enfocado a la movilidad global de la población. Por tanto, lo que se pretende conseguir con este estudio es analizar la situación actual del tráfico de mercancías y pasajeros con origen o destino la península ibérica y sus causas, así como la investigación de las ventajas de la creación de una conexión marítima (Autopista del Mar) con el Norte de África, basándose en los condicionantes técnicos, administrativos, económicos, políticos, sociales y medio ambientales. The competitiveness of freight transport depends on the condition and operation of existing networks and infrastructure, not the mode of transport. In particular, profitability could be increased or production costs of maritime transport could be reduced by using vessels with greater capacity and developing port distribution platforms or dry ports, seeing as 90% of trade between the European Union and third countries happens through its ports. On average 3,2 billion tonnes of freight are handled annualy and 40% of intra-European traffic uses Short Sea Shipping. In spite of European ports annually hosting more than 400 million passengers, there have been major developments in the northern European ports (Rotterdam, Antwerp, Amsterdam). Southern European countries need to find new ways to be more competitive, either by building new infrastructure or by strengthening existing infrastructure, offering costs northern ports. The use of maritime and river transport as an alternative to road transport, especially Short Sea Shipping, has been driven by the European Commission (EC) from 2003 through community support programs for the Motorways of the Sea. These programs include, for example, the Marco Polo I and II programs, which had a total budget of 855 million euros for the period 2003-2013. During this time objectives were set for reducing road congestion, improving the environmental performance of the freight transport system within the community and enhancing intermodal transport. The “Motorway of the Sea” concept arises in the European Commission’s Transport White Paper "European transport policy for 2010: time to decide" on 12 December 2001, as part of a European policy for the development and promotion of sustainable transport systems. A Motorway of the Sea is defined as a short sea route between two points, covering less distance than by road, which provides a significant improvement in intermodal transport times and to the cost supply chain. It contributes to reducing accidents, noise and CO2 emissions, allows drivers to shorten their driving time and prevents the deterioration of land infrastructure thereby saving on maintenance costs. The viability of a Motorway of the Sea depends as much on geographical location factors as on characteristics of the port, taking into account the different market requirements at all times (energy, environmental and technological). There is a new element created by the European Commission: the trans-European transport network (TEN-T). In the case of Spain, with its two access points in the Pyrenees (La Junquera and Irun) as the only land crossings connected to the mainland and major railway limitations due to the three different gauges, it appears less competitive compared to Europe as a whole. However, Spain is the European country with the most kilometers of coastline (over 8,000 km) and a strategic geographical location, which makes it a logistics platform for the all of Southern Europe. This is why the Motorways of the Sea will have an important role, and an almost necessary one to develop major maritime corridors that Europe supports. In fact, Gijon and Vigo have done very well with their respective sea lanes defined as Motorways of the Sea and which connect with the French port of Nantes-Saint Nazaire, as from there trucks can use nort-heading routes. In parallel, the European Union has taken the first steps to boost the first Motorway of the Sea linking Spain to the UK market, specifically the ports of Bilbao and Tilbury. Furthermore, Spain and Italy sealed an international agreement to develop Motorways of the Sea between both countries, pledging to develop a dozen routes between ports on the Spanish and Italian Mediterranean coasts. Currently, there are sea lanes already in use such as Barcelona-Genova, Valencia-Civitavecchia and Alicante-Naples, these are significantly shorter routes by sea than by road. Brussels identified four major maritime corridors that could hold heavy concentrate shipping traffic, and Spain had a crucial role in two of these from the beginning. On 14 April 2004 the Commission planned through the West-Mos project, a network of maritime traffic which includes the essential sea passages the so-called Baltic Motorway (linking Central and Western Europe with the Baltic countries), the southeast Europe Motorway (linking the Adriatic to the Ionian and eastern Mediterranean Sea), the Western Europe Motorway and southwestern Europe Motorway (that links Spain with Britain and the Atlantic coast of France and with the French Mediterranean coast and Italy, respectively). In order to establish Motorways of the Sea between the Iberian Peninsula and Northern Europe especially, it is necessary to remove trucks from the Pyrenean border, where sees heavy traffic (on average 8000 trucks per day) and addressing the points of greatest congestion, such as the Alps, the Pyrenees, the English Channel, the border roads of France and Euskadi, and proposing the transfer of freight on ships or trains. For its part, in order to receive subsidies and support from the European Commission, the routes selected as Motorways of the Sea should maintain a series of quality criteria related to frequency, costs "from logistics platform to logistics platform," simplicity in administrative procedures and participation of several countries, among others. To begin with, studies consider viable a maritime stretch of at least 450 miles with a volume of about 15,000 platforms per year and that have efficient connections from port to trans-European motorways and rail networks. Another objective of the Motorways of the Sea is to develop port capacity so that they can better connect peripheral regions across the European continent. Referring ports, the terminals at the docks must have a berthing line of 250 m., a draft greater than 8 m, a dual carriageway "ro-ro" ramp, portainer cranes, and ensure operability for a minimum of two loads per week. On 28 March 2011 the second White Paper about the future of transport in Europe "Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system" was published. In this Paper the general framework of actions to be undertaken in the next ten years in the field of transport infrastructure was defined, including internal market legislation, reduction of carbon dependency, traffic management technology and clean vehicles, as well as the standardization of different markets. The main challenges are how to eliminate bottlenecks and various obstacles in our European transport network, minimize dependence on oil, reduce GHG emissions by 60% by 2050 compared to 1990 levels and encourage investment in new technologies and infrastructure that reduce EU transport emissions. The connection between the EU and North Africa causes high levels of congestion on the most critical points of the journey: the Spanish-French border, the Mediterranean corridor and Gibraltar Strait. In addition to this, the road transport sector is subject to increased market competition motivated by the elimination of European barriers, greater demands of shippers, greater restrictions on drivers and an increase in the price of diesel. On the other hand, the potential passenger market has a clear differentiation in type of flows: flows in the special period of the Crossing the Straits Operation (CSO), mainly focused on Moroccans who return home on vacation; and flows in the regular session, focused on the global mobile population. Therefore, what I want to achieve with this study is present an analysis of the current situation of freight and passengers to or from the Iberian Peninsula and their causes, as well as present research on the advantages of creating a maritime connection (Motorways of the Sea) with North Africa, based on the technical, administrative, economic, political, social and environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Como es bien sabido, actualmente la Unión Europea pasa por un momento de crisis energética y en concreto España tiene el problema de su gran dependencia energética de otros países, al mismo tiempo que el consumo de gas natural ha aumentado. El hecho de que Estados Unidos se haya autoabastecido energéticamente gracias al gas de esquisto extraído por fracturación hidráulica, hace que en Europa y consecuentemente en España, se vea esta técnica de forma favorable dado que reduciría esta dependencia energética. Pero en contra, la fracturación hidráulica ha dado lugar en Estados Unidos a una serie de accidentes cuyas consecuencias han tenido impacto en el medio ambiente y esto ha provocado un gran debate social a cerca de las consecuencias medioambientales de la extracción de gas de esquisto. Es inevitable, que al igual que ocurre con la extracción de hidrocarburos convencionales, también durante la extracción de hidrocarburos no convencionales existan unos riesgos asociados. Este Trabajo Fin de Máster se engloba dentro de un proyecto titulado “Seguridad en un proyecto de gas de esquisto” concretamente en la convocatoria de 2014 de “Proyectos I+D+I, del Programa Estatal de Investigación y Desarrollo e Innovación orientado a los retos de la sociedad”, por el Ministerio de Economía y Competitividad. Se ha realizado un estudio de incidentes ocurridos en Estados Unidos que es donde más experiencia hay en la práctica de la técnica de la fracturación hidráulica y una vez conocidas sus causas y el tipo de impacto se ha asignado las probabilidades de que ocurran y en qué fase del proyecto de extracción de gas de esquisto es más probable que tengan lugar. Las principales preocupaciones en relación con el medio ambiente que se plantean respecto a la explotación del gas no convencional mediante la técnica de la fracturación hidráulica son: contaminación de los acuíferos (bien sea por el fluido de fracturación empleado o por el metano); consumo de agua necesaria durante la fracturación hidráulica; el tratamiento, control y posible radiactividad de las aguas de retorno; sismicidad inducida por la fracturación hidráulica y contaminación atmosférica por emisiones incontroladas, especialmente metano. Con el objetivo de controlar, prevenir o mitigar los riesgos que conlleva el desarrollo de estas prácticas, la Unión Europea estableció la Recomendación (2014/70/UE), de 22 de enero de 2014. Del mismo modo, debido al incremento del número de permisos de investigación de esta técnica que se solicitaron en España, las actividades de fracturación hidráulica se regularon en el artículo 9.5 de la Ley 17/2013 del Sector de Hidrocarburos y por la Ley 21/2013 de Evaluación de Impacto Ambiental. Consecuentemente se han propuesto en este trabajo una serie de recomendaciones para minimizar los incidentes que pudiesen ocurrir en España provocados por esta técnica. Las más destacadas son: correcto diseño del pozo, realización de estudios hidrológicos y redes de control, reducción del consumo de agua mediante reutilización de las aguas de retorno y de producción después de que se traten en plantas de tratamiento de aguas residuales, utilización de equipos de medida de sustancias químicas en la planta, monitorización sísmica en tiempo real 3D del pozo, así como planes de vigilancia de tipo semáforo para reducir la sismicidad inducida por la aplicación de la técnica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

España se incorporó a la técnica del hormigón armado con más de dos décadas de retraso respecto a Francia o Alemania. En 1890, en Europa se construían ya estructuras de hormigón armado de cierta envergadura y complejidad. En España hubo que esperar hasta 1893 para la primera obra en hormigón armado, que fue un sencillo depósito descubierto en Puigverd (Lérida), ejecutado por el ingeniero militar Francesc Macià con patente Monier. En 1898, de la mano de Hennebique, se empezó la construcción de los dos primeros edificios con estructura de hormigón armado en España. Fueron dos obras puntuales, con proyectos importados de Francia, pero necesarias para introducir de manera definitiva el material. En paralelo, en París, se estaban edificando en hormigón armado la mayoría de los pabellones de la Exposición Universal de 1900. En el cambio de siglo, las construcciones de hormigón armado habían alcanzado ya la madurez proyectual y técnica en Europa. A pesar de la incorporación tardía, se puede constatar por las obras ejecutadas que en un periodo corto de tiempo, entre 1901 y 1906, se alcanzó en España prácticamente el mismo nivel técnico y constructivo que tenían el resto de los países que fueron pioneros en el empleo del hormigón armado. El desarrollo e implantación de una técnica constructiva no es un proceso lineal, y son muchos los factores que intervienen. Las patentes tuvieron una gran importancia en el desarrollo inicial del hormigón armado. Estas ofrecían un producto que funcionaba. Las primeras estructuras de hormigón armado no se calculaban y se construían siguiendo una reglamentación, se compraban. Y el resultado de esa “compra” solía ser, en la mayoría de los casos, satisfactorio. Las patentes vendían sistemas estructurales cuyo funcionamiento estaba corroborado por la experiencia y la pericia de su inventor. Esta investigación parte de la hipótesis de que las patentes sobre cemento y hormigón armado depositadas en España entre 1884 y 1906 fueron uno de los factores que proporcionaron a los técnicos y a las empresas españolas una pericia constructiva sólida en el empleo del hormigón armado. En este trabajo se aborda el estudio del proceso de introducción del hormigón armado en España desde una perspectiva fundamentalmente técnica, incorporando las patentes como una de las razones constructivas que explican su rápida evolución y generalización en un periodo de tiempo breve: 1901-1906. En este proceso se contextualiza y analiza una de las figuras que se considera fundamental en los primeros años del hormigón armado en España, la del ingeniero Juan Manuel de Zafra y Estevan. Esta tesis analiza las patentes de hormigón armado desde el punto de vista estadístico y constructivo. Desde ambas perspectivas se verifica la hipótesis de partida de esta investigación, concluyendo que las patentes fueron una de las razones constructivas de la evolución del hormigón armado en España y de su rápida implantación. ABSTRACT Spain incorporated the reinforced concrete technique more than two decades after France and Germany. In central Europe reinforced concrete structures of considerable size and complexity were being built in 1890, while in Spain it was not until 1893 that the first work, a simple open air water tank, was implemented in Puigverd (Lleida) by the military engineer Francesc Macià with a Monier patent. In 1898 the construction of the first two buildings with reinforced concrete structure in Spain started, with the guidance by Hennebique. They were two isolated cases with projects imported from France, but playing a key role to definitively introduce the material in Spain. In parallel, in Paris, most of the pavilions of the 1900 World Expo were being built in reinforced concrete. At the turn of the century reinforced concrete buildings had reached maturity both as a technology and as a design practice. Despite the late assumption of the material, the works carried out in the very short period between 1901 and 1906 clearly show that Spain reached practically the same technical and constructive level as the other pioneering countries in the use of reinforced concrete. The development and implementation of a constructive technique is never a linear process, there are many factors involved. The patents offered a successful product. Initial reinforced concrete structures were not calculated and built according to regulations, they were bought. And this purchase in most cases was satisfactory for the required use. Patents sold structural systems whose performance was supported by the experience and expertise of its inventor. The hypothesis of this research is based upon the assumption that the cement and concrete patents registered in Spain between 1884 and 1906 were one of the factors that provided Spanish technicians and companies with a solid constructive expertise in the use of reinforced concrete. This investigation studies the introduction of reinforced concrete to Spain from a predominantly technical perspective, incorporating patents as the constructive reason for the rapid evolution and spread in such a short period of time: 1901-1906. Along the way, the role of engineer J. M. de Zafra, generally considered a key agent in the initial years of reinforced concrete in Spain, is contextualized and analyzed. This dissertation analyzes the patents of reinforced concrete from a statistical and constructive point of view. From both perspectives the hypothesis of this research is verified, concluding that patents were one of the constructive reasons for the development of reinforced concrete in Spain.