37 resultados para Non-Newtonian fluid mechanics
Resumo:
A theoretical study of linear global instability of incompressible flow over a rectangular spanwise-periodic open cavity in an unconfined domain is presented. Comparisons with the limited number of results available in the literature are shown. Subsequently, the parameter space is scanned in a systematic manner, varying Reynolds number, incoming boundary-layer thickness and length-to-depth aspect ratio. This permits documenting the neutral curves and leading eigenmode characteristics of this flow. Correlations constructed using the results obtained collapse all available theoretical data on the three-dimensional instabilities.
Resumo:
Liquids held by surface tension forces can bridge the gap between two solid bodies placed not too far apart from each other. The equilibrium conditions and stability criteria for static, cylindrical liquid bridges are well known. However, the behaviour of an unstable liquid bridge, regarding both its transition toward breaking and the resulting configuration, is a matter for discussion. The dynamical problem of axisymmetric rupture of a long liquid bridge anchored at two equal coaxial disks is treated in this paper through the adoption of one-dimensional theories which are widely used in capillary jet problems
Resumo:
In this paper the dynamics of axisymmetric, slender, viscous liquid bridges having volume close to the cylindrical one, and subjected to a small gravitational field parallel to the axis of the liquid bridge, is considered within the context of one-dimensional theories. Although the dynamics of liquid bridges has been treated through a numerical analysis in the inviscid case, numerical methods become inappropriate to study configurations close to the static stability limit because the evolution time, and thence the computing time, increases excessively. To avoid this difficulty, the problem of the evolution of these liquid bridges has been attacked through a nonlinear analysis based on the singular perturbation method and, whenever possible, the results obtained are compared with the numerical ones.
Resumo:
A one-dimensional inviscid slice model has been used to study numerically the influence of axial microgravity on the breaking of liquid bridges having a volume close to that of gravitationless minimum volume stability limit. Equilibrium shapes and stability limits have been obtained as well as the dependence of the volume of the two drops formed after breaking on both the length and the volume of the liquid bridge. The breaking process has also been studied experimentally. Good agreement has been found between theory and experiment for neutrally buoyant systems
Resumo:
The stability of an infinitely long compound liquid column is analysed by using a one-dimensional inviscid slice model. Results obtained from this one-dimensional linear analysis are applicable to the study of compound capillary jets, which are used in the ink-jet printing technique. Stability limits and the breaking regimes of such fluid configurations are established, and, whenever possible, theoretical results are compared with experimental ones.
Resumo:
A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.
Resumo:
The main effects on the dynamics of a liquid bridge due to the presence of an outer liquid, as occur in experiments using the Plateau-tank technique, are considered. The one-dimensional nonlinear model developed here allows us to perform the computation of both breaking processes and oscillatory motions of slender liquid bridges, although in this paper only the results concerning breaking processes are reported. Additionally,the oscillatory motions are studied both experimentally and by using a new linear model. Results from both sources show good agreement