50 resultados para Multi-objective genetic algorithms
Resumo:
With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Artificial Neural Networks still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning ANN parameters. In recent years the use of hybrid technologies, combining Artificial Neural Networks and Genetic Algorithms, has been utilized to. In this work, several ANN topologies were trained and tested using Artificial Neural Networks and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out.
Resumo:
By analysing the dynamic principles of the human gait, an economic gait‐control analysis is performed, and passive elements are included to increase the energy efficiency in the motion control of active orthoses. Traditional orthoses use position patterns from the clinical gait analyses (CGAs) of healthy people, which are then de‐normalized and adjusted to each user. These orthoses maintain a very rigid gait, and their energy cosT is very high, reducing the autonomy of the user. First, to take advantage of the inherent dynamics of the legs, a state machine pattern with different gains in eachstate is applied to reduce the actuator energy consumption. Next, different passive elements, such as springs and brakes in the joints, are analysed to further reduce energy consumption. After an off‐line parameter optimization and a heuristic improvement with genetic algorithms, a reduction in energy consumption of 16.8% is obtained by applying a state machine control pattern, and a reduction of 18.9% is obtained by using passive elements. Finally, by combining both strategies, a more natural gait is obtained, and energy consumption is reduced by 24.6%compared with a pure CGA pattern.
Resumo:
El diseño y desarrollo de sistemas de suspensión para vehículos se basa cada día más en el diseño por ordenador y en herramientas de análisis por ordenador, las cuales permiten anticipar problemas y resolverlos por adelantado. El comportamiento y las características dinámicas se calculan con precisión, bajo coste, y recursos y tiempos de cálculo reducidos. Sin embargo, existe una componente iterativa en el proceso, que requiere la definición manual de diseños a través de técnicas “prueba y error”. Esta Tesis da un paso hacia el desarrollo de un entorno de simulación eficiente capaz de simular, analizar y evaluar diseños de suspensiones vehiculares, y de mejorarlos hacia la solución optima mediante la modificación de los parámetros de diseño. La modelización mediante sistemas multicuerpo se utiliza aquí para desarrollar un modelo de autocar con 18 grados de libertad, de manera detallada y eficiente. La geometría y demás características de la suspensión se ajustan a las del vehículo real, así como los demás parámetros del modelo. Para simular la dinámica vehicular, se utiliza una formulación multicuerpo moderna y eficiente basada en las ecuaciones de Maggi, a la que se ha incorporado un visor 3D. Así, se consigue simular maniobras vehiculares en tiempos inferiores al tiempo real. Una vez que la dinámica está disponible, los análisis de sensibilidad son cruciales para una optimización robusta y eficiente. Para ello, se presenta una técnica matemática que permite derivar las variables dinámicas dentro de la formulación, de forma algorítmica, general, con la precisión de la maquina, y razonablemente eficiente: la diferenciación automática. Este método propaga las derivadas con respecto a las variables de diseño a través del código informático y con poca intervención del usuario. En contraste con otros enfoques en la bibliografía, generalmente particulares y limitados, se realiza una comparación de librerías, se desarrolla una formulación híbrida directa-automática para el cálculo de sensibilidades, y se presentan varios ejemplos reales. Finalmente, se lleva a cabo la optimización de la respuesta dinámica del vehículo citado. Se analizan cuatro tipos distintos de optimización: identificación de parámetros, optimización de la maniobrabilidad, optimización del confort y optimización multi-objetivo, todos ellos aplicados al diseño del autocar. Además de resultados analíticos y gráficos, se incluyen algunas consideraciones acerca de la eficiencia. En resumen, se mejora el comportamiento dinámico de vehículos por medio de modelos multicuerpo y de técnicas de diferenciación automática y optimización avanzadas, posibilitando un ajuste automático, preciso y eficiente de los parámetros de diseño. ABSTRACT Each day, the design and development of vehicle suspension systems relies more on computer-aided design and computer-aided engineering tools, which allow anticipating the problems and solving them ahead of time. Dynamic behavior and characteristics are thus simulated accurately and inexpensively with moderate computational times and resources. There is, however, an iterative component in the process, which involves the manual definition of designs in a trialand-error manner. This Thesis takes a step towards the development of an efficient simulation framework capable of simulating, analyzing and evaluating vehicle suspension designs, and automatically improving them by varying the design parameters towards the optimal solution. The multibody systems approach is hereby used to model a three-dimensional 18-degrees-of-freedom coach in a comprehensive yet efficient way. The suspension geometry and characteristics resemble the ones from the real vehicle, as do the rest of vehicle parameters. In order to simulate vehicle dynamics, an efficient, state-of-the-art multibody formulation based on Maggi’s equations is employed, and a three-dimensional graphics viewer is developed. As a result, vehicle maneuvers can be simulated faster than real-time. Once the dynamics are ready, a sensitivity analysis is crucial for a robust optimization. To that end, a mathematical technique is introduced, which allows differentiating the dynamic variables within the multibody formulation in a general, algorithmic, accurate to machine precision, and reasonably efficient way: automatic differentiation. This method propagates the derivatives with respect to the design parameters throughout the computer code, with little user interaction. In contrast with other attempts in the literature, mostly not generalpurpose, a benchmarking of libraries is carried out, a hybrid direct-automatic differentiation approach for the computation of sensitivities is developed, and several real-life examples are analyzed. Finally, a design optimization process of the aforementioned vehicle is carried out. Four different types of dynamic response optimization are presented: parameter identification, handling optimization, ride comfort optimization and multi-objective optimization; all of which are applied to the design of the coach example. Together with analytical and visual proof of the results, efficiency considerations are made. In summary, the dynamic behavior of vehicles is improved by using the multibody systems approach, along with advanced differentiation and optimization techniques, enabling an automatic, accurate and efficient tuning of design parameters.
Resumo:
Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands.
Resumo:
In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. 1RM, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the 1RM assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the 1RM from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the 1RM in the bench press action, until reaching their actual 1RM. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the 1RM prediction in the range between 1 and 10 repetitions. At 75% of the 1RM some subjects (n = 5) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects (n = 20) performed statistically significant (p < 0:05) more repetitions at 70% than at 75% of their actual 1RM in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for 1RM when all the sets are performed until exhaustion, as no significant differences (p < 0:05) were found in the RPE at 75%, 80% and 90% of the 1RM. Also, years of experience and weekly hours of strength training are better correlated to 1RM (p < 0:05) than body weight. O'Connor et al. 1RM prediction equation seems to arise from the data gathered and seems to be the most accurate 1RM prediction equation from those proposed in literature and used in this study. Epley's 1RM prediction equation is reproduced by means of data simulation from 1RM literature equations. Finally, future lines of research are proposed related to the problem of the 1RM prediction by means of genetic algorithms, neural networks and clustering techniques. RESUMEN En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de \Descubrimiento de conocimiento en bases de datos\) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0:05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El ínndice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias signifiativas (p < 0:05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0:05) que el peso corporal. La ecuación de O'Connor et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.
Resumo:
The optimization of the nose shape of a high-speed train entering a tunnel has been performed using genetic algorithms(GA).This optimization method requires the parameterization of each optimal candidate as a design vector.The geometrical parameterization of the nose has been defined using three design variables that include the most characteristic geometrical factors affecting the compression wave generated at the entry of the train and the aerodynamic drag of the train.
Resumo:
As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.
Resumo:
Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode these forests. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight different evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm, generational genetic algorithm, steady-state genetic algorithm, covariance matrix adaptation evolution strategy, differential evolution, elitist evolution strategy, non-elitist evolution strategy and particle swarm optimization. The best results are for the estimation of distribution algorithms and both types of genetic algorithms, although the genetic algorithms are significantly faster.
Resumo:
Encontrar el árbol de expansión mínimo con restricción de grado de un grafo (DCMST por sus siglas en inglés) es un problema NP-complejo ampliamente estudiado. Una de sus aplicaciones más importantes es el dise~no de redes. Aquí nosotros tratamos una nueva variante del problema DCMST, que consiste en encontrar el árbol de expansión mínimo no solo con restricciones de grado, sino también con restricciones de rol (DRCMST), es decir, a~nadimos restricciones para restringir el rol que los nodos tienen en el árbol. Estos roles pueden ser nodo raíz, nodo intermedio o nodo hoja. Por otra parte, no limitamos el número de nodos raíz a uno, por lo que, en general, construiremos bosques de DRCMSTs. El modelado en los problemas de dise~no de redes puede beneficiarse de la posibilidad de generar más de un árbol y determinar el rol de los nodos en la red. Proponemos una nueva representación basada en permutaciones para codificar los bosques de DRCMSTs. En esta nueva representación, una permutación codifica simultáneamente todos los árboles que se construirán. Nosotros simulamos una amplia variedad de problemas DRCMST que optimizamos utilizando ocho algoritmos de computación evolutiva diferentes que codifican los individuos de la población utilizando la representación propuesta. Los algoritmos que utilizamos son: algoritmo de estimación de distribuciones (EDA), algoritmo genético generacional (gGA), algoritmo genético de estado estacionario (ssGA), estrategia evolutiva basada en la matriz de covarianzas (CMAES), evolución diferencial (DE), estrategia evolutiva elitista (ElitistES), estrategia evolutiva no elitista (NonElitistES) y optimización por enjambre de partículas (PSO). Los mejores resultados fueron para el algoritmo de estimación de distribuciones utilizado y ambos tipos de algoritmos genéticos, aunque los algoritmos genéticos fueron significativamente más rápidos.---ABSTRACT---Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode the forest of DRCMSTs. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight diferent evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm (EDA), generational genetic algorithm (gGA), steady-state genetic algorithm (ssGA), covariance matrix adaptation evolution strategy (CMAES), diferential evolution (DE), elitist evolution strategy (ElististES), non-elitist evolution strategy (NonElististES) and particle swarm optimization (PSO). The best results are for the estimation of distribution algorithm and both types of genetic algorithms, although the genetic algorithms are significantly faster. iv
Resumo:
El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.
A simplified spectral approachfor impedance-based damage identification of frp-strengthened rc beams
Resumo:
Hoy en día, el refuerzo y reparación de estructuras de hormigón armado mediante el pegado de bandas de polímeros reforzados con fibras (FRP) se emplea cada vez con más frecuencia a causa de sus numerosas ventajas. Sin embargo, las vigas reforzadas con esta técnica pueden experimentar un modo de fallo frágil a causa del despegue repentino de la banda de FRP a partir de una fisura intermedia. A pesar de su importancia, el número de trabajos que abordan el estudio de este mecanismo de fallo y su monitorización es muy limitado. Por ello, el desarrollo de metodologías capaces de monitorizar a largo plazo la adherencia de este refuerzo a las estructuras de hormigón e identificar cuándo se inicia el despegue de la banda constituyen un importante desafío a abordar. El principal objetivo de esta tesis es la implementación de una metodología fiable y efectiva, capaz de detectar el despegue de una banda de FRP en una viga de hormigón armado a partir de una fisura intermedia. Para alcanzar este objetivo se ha implementado un procedimiento de calibración numérica a partir de ensayos experimentales. Para ello, en primer lugar, se ha desarrollado un modelo numérico unidimensional simple y no costoso representativo del comportamiento de este tipo vigas de hormigón reforzadas con FRP, basado en un modelo de fisura discreta para el hormigón y el método de elementos espectrales. La formación progresiva de fisuras a flexion y el consiguiente despegue en la interface entre el hormigón y el FRP se formulan mediante la introducción de un nuevo elemento capaz de representar ambos fenómenos simultáneamente sin afectar al procedimiento numérico. Además, con el modelo propuesto, se puede obtener de una forma sencilla la respuesta dinámica en altas frecuencias de este tipo de estructuras, lo cual puede hacer muy útil su uso como herramienta de diagnosis y detección del despegue en su fase inicial mediante una monitorización de la variación de las características dinámicas locales de la estructura. Un método de evaluación no destructivo muy prometedor para la monitorización local de las estructuras es el método de la impedancia usando sensores-actuadores piezoeléctricos (PZT). La impedancia eléctrica de los sensores PZT se puede relacionar con la impedancia mecánica de las estructuras donde se encuentran adheridos Ya que la impedancia mecánica de una estructura se verá afectada por su deterioro, se pueden implementar indicadores de daño mediante una comparación del espectro de admitancia (inversa de la impedancia) a lo largo de distintas etapas durante el periodo de servicio de una estructura. Cualquier cambio en el espectro se podría interpretar como una variación en la integridad de la estructura. La impedancia eléctrica se mide a altas frecuencias con lo cual esta metodología debería ser muy sensible a la detección de estados de daño incipiente local, tal como se desea en la aplicación de este trabajo. Se ha implementado un elemento espectral PZT-FRP como extensión del modelo previamente desarrollado, con el objetivo de poder calcular numéricamente la impedancia eléctrica de sensores PZT adheridos a bandas de FRP sobre una viga de hormigón armado. El modelo, combinado con medidas experimentales captadas mediante sensores PZT, se implementa en el marco de una metodología de calibración de modelos para detectar cuantitativamente el despegue en la interfase entre una banda de FRP y una viga de hormigón. El procedimiento de optimización se resuelve empleando el método del enjambre cooperativo con un algoritmo bagging. Los resultados muestran una gran aproximación en la estimación del daño para el problema propuesto. Adicionalmente, se ha desarrollado también un método adaptativo para el mallado de elementos espectrales con el objetivo de localizar las zonas dañadas a partir de los resultados experimentales, el cual contribuye a aumentar la robustez y efectividad del método propuesto a la hora de identificar daños incipientes en su aparición inicial. Finalmente, se ha llevado a cabo un procedimiento de optimización multi-objetivo para detectar el despegue inicial en una viga de hormigón a escala real reforzada con FRP a partir de las impedancias captadas con una red de sensores PZT instrumentada a lo largo de la longitud de la viga. Cada sensor aporta los datos para definir cada una de las funciones objetivo que definen el procedimiento. Combinando el modelo previo de elementos espectrales con un algoritmo PSO multi-objetivo el procedimiento de detección de daño resultante proporciona resultados satisfactorios considerando la escala de la estructura y todas las incertidumbres características ligadas a este proceso. Los resultados obtenidos prueban la viabilidad y capacidad de los métodos antes mencionados y también su potencial en aplicaciones reales. Abstract Nowadays, the external bonding of fibre reinforced polymer (FRP) plates or sheets is increasingly used for the strengthening and retrofitting of reinforced concrete (RC) structures due to its numerous advantages. However, this kind of strengthening often leads to brittle failure modes being the most dominant failure mode the debonding induced by an intermediate crack (IC). In spite of its importance, the number of studies regarding the IC debonding mechanism and bond health monitoring is very limited. Methodologies able to monitor the long-term efficiency of bonding and successfully identify the initiation of FRP debonding constitute a challenge to be met. The main purpose of this thesisis the implementation of a reliable and effective methodology of damage identification able to detect intermediate crack debonding in FRP-strengthened RC beams. To achieve this goal, a model updating procedure based on numerical simulations and experimental tests has been implemented. For it, firstly, a simple and non-expensive one-dimensional model based on the discrete crack approach for concrete and the spectral element method has been developed. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics. One very promising active non-destructive evaluation method for local monitoring is impedance-based structural health monitoring(SHM)using piezoelectric ceramic (PZT) sensor-actuators. The electrical impedance of the PZT can be directly related to the mechanical impedance of the host structural component where the PZT transducers are attached. Since the structural mechanical impedance will be affected by the presence of structural damage, comparisons of admittance (inverse of impedance) spectra at various times during the service period of the structure can be used as damage indicator. Any change in the spectra might be an indication of a change in the structural integrity. The electrical impedance is measured at high frequencies with which this methodology appears to be very sensitive to incipient damage in structural systems as desired for our application. Abonded-PZT-FRP spectral beam element approach based on an extension of the previous discrete crack approach is implemented in the calculation of the electrical impedance of the PZT transducer bonded to the FRP plates of a RC beam. This approach in conjunction with the experimental measurements of PZT actuator-sensors mounted on the structure is used to present an updating methodology to quantitatively detect interfacial debonding between a FRP strip and the host RC structure. The updating procedure is solved by using an ensemble particle swarm optimization approach with abagging algorithm, and the results demonstrate a big improvement for the performance and accuracy of the damage detection in the proposed problem. Additionally, an adaptive strategy of spectral element mesh has been also developed to detect damage location with experimental results, which shows the robustness and effectiveness of the proposed method to identify initial and incipient damages at its early stage. Lastly, multi-objective optimization has been carried out to detect debonding damage in a real scale FRP-strengthened RC beam by using impedance signatures. A net of PZT sensors is distributed along the beam to construct impedance-based multiple objectives under gradually induced damage scenario. By combining the spectral element model presented previously and an ensemble multi-objective PSO algorithm, the implemented damage detection process yields satisfactory predictions considering the scale and uncertainties of the structure. The obtained results prove the feasibility and capability of the aforementioned methods and also their potentials in real engineering applications.
Resumo:
Los análisis de fiabilidad representan una herramienta adecuada para contemplar las incertidumbres inherentes que existen en los parámetros geotécnicos. En esta Tesis Doctoral se desarrolla una metodología basada en una linealización sencilla, que emplea aproximaciones de primer o segundo orden, para evaluar eficientemente la fiabilidad del sistema en los problemas geotécnicos. En primer lugar, se emplean diferentes métodos para analizar la fiabilidad de dos aspectos propios del diseño de los túneles: la estabilidad del frente y el comportamiento del sostenimiento. Se aplican varias metodologías de fiabilidad — el Método de Fiabilidad de Primer Orden (FORM), el Método de Fiabilidad de Segundo Orden (SORM) y el Muestreo por Importancia (IS). Los resultados muestran que los tipos de distribución y las estructuras de correlación consideradas para todas las variables aleatorias tienen una influencia significativa en los resultados de fiabilidad, lo cual remarca la importancia de una adecuada caracterización de las incertidumbres geotécnicas en las aplicaciones prácticas. Los resultados también muestran que tanto el FORM como el SORM pueden emplearse para estimar la fiabilidad del sostenimiento de un túnel y que el SORM puede mejorar el FORM con un esfuerzo computacional adicional aceptable. Posteriormente, se desarrolla una metodología de linealización para evaluar la fiabilidad del sistema en los problemas geotécnicos. Esta metodología solamente necesita la información proporcionada por el FORM: el vector de índices de fiabilidad de las funciones de estado límite (LSFs) que componen el sistema y su matriz de correlación. Se analizan dos problemas geotécnicos comunes —la estabilidad de un talud en un suelo estratificado y un túnel circular excavado en roca— para demostrar la sencillez, precisión y eficiencia del procedimiento propuesto. Asimismo, se reflejan las ventajas de la metodología de linealización con respecto a las herramientas computacionales alternativas. Igualmente se muestra que, en el caso de que resulte necesario, se puede emplear el SORM —que aproxima la verdadera LSF mejor que el FORM— para calcular estimaciones más precisas de la fiabilidad del sistema. Finalmente, se presenta una nueva metodología que emplea Algoritmos Genéticos para identificar, de manera precisa, las superficies de deslizamiento representativas (RSSs) de taludes en suelos estratificados, las cuales se emplean posteriormente para estimar la fiabilidad del sistema, empleando la metodología de linealización propuesta. Se adoptan tres taludes en suelos estratificados característicos para demostrar la eficiencia, precisión y robustez del procedimiento propuesto y se discuten las ventajas del mismo con respecto a otros métodos alternativos. Los resultados muestran que la metodología propuesta da estimaciones de fiabilidad que mejoran los resultados previamente publicados, enfatizando la importancia de hallar buenas RSSs —y, especialmente, adecuadas (desde un punto de vista probabilístico) superficies de deslizamiento críticas que podrían ser no-circulares— para obtener estimaciones acertadas de la fiabilidad de taludes en suelos. Reliability analyses provide an adequate tool to consider the inherent uncertainties that exist in geotechnical parameters. This dissertation develops a simple linearization-based approach, that uses first or second order approximations, to efficiently evaluate the system reliability of geotechnical problems. First, reliability methods are employed to analyze the reliability of two tunnel design aspects: face stability and performance of support systems. Several reliability approaches —the first order reliability method (FORM), the second order reliability method (SORM), the response surface method (RSM) and importance sampling (IS)— are employed, with results showing that the assumed distribution types and correlation structures for all random variables have a significant effect on the reliability results. This emphasizes the importance of an adequate characterization of geotechnical uncertainties for practical applications. Results also show that both FORM and SORM can be used to estimate the reliability of tunnel-support systems; and that SORM can outperform FORM with an acceptable additional computational effort. A linearization approach is then developed to evaluate the system reliability of series geotechnical problems. The approach only needs information provided by FORM: the vector of reliability indices of the limit state functions (LSFs) composing the system, and their correlation matrix. Two common geotechnical problems —the stability of a slope in layered soil and a circular tunnel in rock— are employed to demonstrate the simplicity, accuracy and efficiency of the suggested procedure. Advantages of the linearization approach with respect to alternative computational tools are discussed. It is also found that, if necessary, SORM —that approximates the true LSF better than FORM— can be employed to compute better estimations of the system’s reliability. Finally, a new approach using Genetic Algorithms (GAs) is presented to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes, and such RSSs are then employed to estimate the system reliability of slopes, using our proposed linearization approach. Three typical benchmark-slopes with layered soils are adopted to demonstrate the efficiency, accuracy and robustness of the suggested procedure, and advantages of the proposed method with respect to alternative methods are discussed. Results show that the proposed approach provides reliability estimates that improve previously published results, emphasizing the importance of finding good RSSs —and, especially, good (probabilistic) critical slip surfaces that might be non-circular— to obtain good estimations of the reliability of soil slope systems.
Resumo:
Este proyecto se centra en la implementación de un sistema de control activo de ruido mediante algoritmos genéticos. Para ello, se ha tenido en cuenta el tipo de ruido que se quiere cancelar y el diseño del controlador, parte fundamental del sistema de control. El control activo de ruido sólo es eficaz a bajas frecuencias, hasta los 250 Hz, justo para las cuales los elementos pasivos pierden efectividad, y en zonas o recintos de pequeñas dimensiones y conductos. El controlador ha de ser capaz de seguir todas las posibles variaciones del campo acústico que puedan producirse (variaciones de fase, de frecuencia, de amplitud, de funciones de transferencia electro-acústicas, etc.). Su funcionamiento está basado en algoritmos FIR e IIR adaptativos. La elección de un tipo de filtro u otro depende de características tales como linealidad, causalidad y número de coeficientes. Para que la función de transferencia del controlador siga las variaciones que surgen en el entorno acústico de cancelación, tiene que ir variando el valor de los coeficientes del filtro mediante un algoritmo adaptativo. En este proyecto se emplea como algoritmo adaptativo un algoritmo genético, basado en la selección biológica, es decir, simulando el comportamiento evolutivo de los sistemas biológicos. Las simulaciones se han realizado con dos tipos de señales: ruido de carácter aleatorio (banda ancha) y ruido periódico (banda estrecha). En la parte final del proyecto se muestran los resultados obtenidos y las conclusiones al respecto. Summary. This project is focused on the implementation of an active noise control system using genetic algorithms. For that, it has been taken into account the noise type wanted to be canceled and the controller design, a key part of the control system. The active noise control is only effective at low frequencies, up to 250 Hz, for which the passive elements lose effectiveness, and in small areas or enclosures and ducts. The controller must be able to follow all the possible variations of the acoustic field that might be produced (phase, frequency, amplitude, electro-acoustic transfer functions, etc.). It is based on adaptive FIR and IIR algorithms. The choice of a kind of filter or another depends on characteristics like linearity, causality and number of coefficients. Moreover, the transfer function of the controller has to be changing filter coefficients value thought an adaptive algorithm. In this project a genetic algorithm is used as adaptive algorithm, based on biological selection, simulating the evolutionary behavior of biological systems. The simulations have been implemented with two signal types: random noise (broadband) and periodic noise (narrowband). In the final part of the project the results and conclusions are shown.
Resumo:
La energía transportada por el oleaje a través de los océanos (energía undimotriz) se enmarca dentro de las denominadas energías oceánicas. Su aprovechamiento para generar energía eléctrica (o ser aprovechada de alguna otra forma) es una idea reflejada ya hace más de dos siglos en una patente (1799). Desde entonces, y con especial intensidad desde los años 70, ha venido despertando el interés de instituciones ligadas al I+D+i y empresas del sector energético y tecnológico, debido principalmente a la magnitud del recurso disponible. Actualmente se puede considerar al sector en un estado precomercial, con un amplio rango de dispositivos y tecnologías en diferente grado de desarrollo en los que ninguno destaca sobre los otros (ni ha demostrado su viabilidad económica), y sin que se aprecie una tendencia a converger un único dispositivo (o un número reducido de ellos). El recurso energético que se está tratando de aprovechar, pese a compartir la característica de no-controlabilidad con otras fuentes de energía renovable como la eólica o la solar, presenta una variabilidad adicional. De esta manera, diferentes localizaciones, pese a poder presentar recursos de contenido energético similar, presentan oleajes de características muy diferentes en términos de alturas y periodos de oleaje, y en la dispersión estadística de estos valores. Esta variabilidad en el oleaje hace que cobre especial relevancia la adecuación de los dispositivos de aprovechamiento de energía undimotriz (WEC: Wave Energy Converter) a su localización, de cara a mejorar su viabilidad económica. Parece razonable suponer que, en un futuro, el proceso de diseño de un parque de generación undimotriz implique un rediseño (en base a una tecnología conocida) para cada proyecto de implantación en una nueva localización. El objetivo de esta tesis es plantear un procedimiento de dimensionado de una tecnología de aprovechamiento de la energía undimotriz concreta: los absorbedores puntuales. Dicha metodología de diseño se plantea como un problema de optimización matemático, el cual se resuelve utilizando un algoritmo de optimización bioinspirado: evolución diferencial. Este planteamiento permite automatizar la fase previa de dimensionado implementando la metodología en un código de programación. El proceso de diseño de un WEC es un problema de ingería complejo, por lo que no considera factible el planteamiento de un diseño completo mediante un único procedimiento de optimización matemático. En vez de eso, se platea el proceso de diseño en diferentes etapas, de manera que la metodología desarrollada en esta tesis se utilice para obtener las dimensiones básicas de una solución de referencia de WEC, la cual será utilizada como punto de partida para continuar con las etapas posteriores del proceso de diseño. La metodología de dimensionado previo presentada en esta tesis parte de unas condiciones de contorno de diseño definidas previamente, tales como: localización, características del sistema de generación de energía eléctrica (PTO: Power Take-Off), estrategia de extracción de energía eléctrica y concepto concreto de WEC). Utilizando un algoritmo de evolución diferencial multi-objetivo se obtiene un conjunto de soluciones factibles (de acuerdo con una ciertas restricciones técnicas y dimensionales) y óptimas (de acuerdo con una serie de funciones objetivo de pseudo-coste y pseudo-beneficio). Dicho conjunto de soluciones o dimensiones de WEC es utilizado como caso de referencia en las posteriores etapas de diseño. En el documento de la tesis se presentan dos versiones de dicha metodología con dos modelos diferentes de evaluación de las soluciones candidatas. Por un lado, se presenta un modelo en el dominio de la frecuencia que presenta importantes simplificaciones en cuanto al tratamiento del recurso del oleaje. Este procedimiento presenta una menor carga computacional pero una mayor incertidumbre en los resultados, la cual puede traducirse en trabajo adicional en las etapas posteriores del proceso de diseño. Sin embargo, el uso de esta metodología resulta conveniente para realizar análisis paramétricos previos de las condiciones de contorno, tales como la localización seleccionada. Por otro lado, la segunda metodología propuesta utiliza modelos en el domino estocástico, lo que aumenta la carga computacional, pero permite obtener resultados con menos incertidumbre e información estadística muy útil para el proceso de diseño. Por este motivo, esta metodología es más adecuada para su uso en un proceso de dimensionado completo de un WEC. La metodología desarrollada durante la tesis ha sido utilizada en un proyecto industrial de evaluación energética preliminar de una planta de energía undimotriz. En dicho proceso de evaluación, el método de dimensionado previo fue utilizado en una primera etapa, de cara a obtener un conjunto de soluciones factibles de acuerdo con una serie de restricciones técnicas básicas. La selección y refinamiento de la geometría de la solución geométrica de WEC propuesta fue realizada a posteriori (por otros participantes del proyecto) utilizando un modelo detallado en el dominio del tiempo y un modelo de evaluación económica del dispositivo. El uso de esta metodología puede ayudar a reducir las iteraciones manuales y a mejorar los resultados obtenidos en estas últimas etapas del proyecto. ABSTRACT The energy transported by ocean waves (wave energy) is framed within the so-called oceanic energies. Its use to generate electric energy (or desalinate ocean water, etc.) is an idea expressed first time in a patent two centuries ago (1799). Ever since, but specially since the 1970’s, this energy has become interesting for R&D institutions and companies related with the technological and energetic sectors mainly because of the magnitude of available energy. Nowadays the development of this technology can be considered to be in a pre-commercial stage, with a wide range of devices and technologies developed to different degrees but with none standing out nor economically viable. Nor do these technologies seem ready to converge to a single device (or a reduce number of devices). The energy resource to be exploited shares its non-controllability with other renewable energy sources such as wind and solar. However, wave energy presents an additional short-term variability due to its oscillatory nature. Thus, different locations may show waves with similar energy content but different characteristics such as wave height or wave period. This variability in ocean waves makes it very important that the devices for harnessing wave energy (WEC: Wave Energy Converter) fit closely to the characteristics of their location in order to improve their economic viability. It seems reasonable to assume that, in the future, the process of designing a wave power plant will involve a re-design (based on a well-known technology) for each implementation project in any new location. The objective of this PhD thesis is to propose a dimensioning method for a specific wave-energy-harnessing technology: point absorbers. This design methodology is presented as a mathematical optimization problem solved by using an optimization bio-inspired algorithm: differential evolution. This approach allows automating the preliminary dimensioning stage by implementing the methodology in programmed code. The design process of a WEC is a complex engineering problem, so the complete design is not feasible using a single mathematical optimization procedure. Instead, the design process is proposed in different stages, so the methodology developed in this thesis is used for the basic dimensions of a reference solution of the WEC, which would be used as a starting point for the later stages of the design process. The preliminary dimensioning methodology presented in this thesis starts from some previously defined boundary conditions such as: location, power take-off (PTO) characteristic, strategy of energy extraction and specific WEC technology. Using a differential multi-objective evolutionary algorithm produces a set of feasible solutions (according to certain technical and dimensional constraints) and optimal solutions (according to a set of pseudo-cost and pseudo-benefit objective functions). This set of solutions or WEC dimensions are used as a reference case in subsequent stages of design. In the document of this thesis, two versions of this methodology with two different models of evaluation of candidate solutions are presented. On the one hand, a model in the frequency domain that has significant simplifications in the treatment of the wave resource is presented. This method implies a lower computational load but increased uncertainty in the results, which may lead to additional work in the later stages of the design process. However, use of this methodology is useful in order to perform previous parametric analysis of boundary conditions such as the selected location. On the other hand, the second method uses stochastic models, increasing the computational load, but providing results with smaller uncertainty and very useful statistical information for the design process. Therefore, this method is more suitable to be used in a detail design process for full dimensioning of the WEC. The methodology developed throughout the thesis has been used in an industrial project for preliminary energetic assessment of a wave energy power plant. In this assessment process, the method of previous dimensioning was used in the first stage, in order to obtain a set of feasible solutions according to a set of basic technical constraints. The geometry of the WEC was refined and selected subsequently (by other project participants) using a detailed model in the time domain and a model of economic evaluation of the device. Using this methodology can help to reduce the number of design iterations and to improve the results obtained in the last stages of the project.
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.