33 resultados para Mega-mining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta memoria es el resultado de un proyecto cuyo objetivo ha sido realizar un análisis de la posible aplicación de técnicas relativas al Process Mining para entornos AmI (Ambient Intelligence). Dicho análisis tiene la facultad de presentar de forma clara los resultados extraídos de los procesos relativos a un caso de uso planteado, así como de aplicar dichos resultados a aplicaciones relativas a entornos AmI, como automatización de tareas o simulación social basada en agentes. Para que dicho análisis sea comprensible por el lector, se presentan detalladas explicaciones de los conceptos tratados y las técnicas empleadas. Además, se analizan exhaustivamente las dos herramientas software más utilizadas en cuanto a minería de procesos se refiere, ProM y Disco, presentando ventajas e inconvenientes de cada una, así como una comparación entre las dos. Posteriormente se ha desarrollado una metodología para el análisis de procesos con la herramienta ProM, anteriormente mencionada, explicando cuidadosamente cada uno de los pasos así como los fundamentos de los algoritmos utilizados. Por último, se han presentado las conclusiones extraídas del trabajo, así como las posibles líneas de continuación del proyecto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Como la demanda de la sociedad de metal aumenta, la tasa de extracción de minerales hace lo mismo. Esto contribuye al aumento de las implicaciones ambientales en forma de emisiones y el agotamiento de los recursos naturales. El reciclaje es una fuente importante para satisfacer la demanda de metales; como mucho un 30% de la demanda de metal está cubierto por el reciclaje en algunos mercados. Otra forma de reciclaje es la práctica de Urban Mining. El presente trabajo estudia la potencialidad del Landfill Mining en los vertederos españoles. Este concepto denomina el proceso de recuperación de materiales residuales depositados en vertederos para su uso posterior como materiales secundarios y, cuando ello no es posible, para su reaprovechamiento energético. Como consecuencia esto implica el cumplimiento de un segundo objetivo: la reducción o mitigación de las emisiones de gases de efecto invernadero derivadas de la presencia de residuos en vertederos.