40 resultados para MPPT fotovoltaico


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con 1.300 millones de personas en el mundo sin acceso a la electricidad (la mayoría en entornos rurales de países empobrecidos), la energía solar fotovoltaica constituye una solución viable técnica y económicamente para electrificar las zonas más remotas del planeta donde las redes eléctricas convencionales no llegan. Casi todos los países en el mundo han desarrollado algún tipo de programa de electrificación fotovoltaica rural durante los últimos 40 años, principalmente los países más pobres, donde a través de diferentes modelos de financiación, se han instalado millones de sistemas solares domiciliarios (pequeños sistemas fotovoltaicos para uso doméstico). Durante este largo período, se han ido superando muchas barreras, como la mejora de la calidad de los sistemas fotovoltaicos, la reducción de costes, la optimización del diseño y del dimensionado de los sistemas, la disponibilidad financiera para implantar programas de electrificación rural, etc. Gracias a esto, la electrificación rural descentralizada ha experimentado recientemente un salto de escala caracterizada por la implantación de grandes programas con miles de sistemas solares domiciliarios e integrando largos períodos de mantenimiento. Muchos de estos grandes programas se están llevando a cabo con limitado éxito, ya que generalmente parten de supuestos e hipótesis poco contrastadas con la realidad, comprometiendo así un retorno económico que permita el desarrollo de esta actividad a largo plazo. En este escenario surge un nuevo reto: el de cómo garantizar la sostenibilidad de los grandes programas de electrificación rural fotovoltaica. Se argumenta que la principal causa de esta falta de rentabilidad es el imprevisto alto coste de la fase de operación y mantenimiento. Cuestiones clave tales como la estructura de costes de operación y mantenimiento o la fiabilidad de los componentes del sistema fotovoltaico no están bien caracterizados hoy en día. Esta situación limita la capacidad de diseñar estructuras de mantenimiento capaces de asegurar la sostenibilidad y la rentabilidad del servicio de operación y mantenimiento en estos programas. Esta tesis doctoral tiene como objetivo responder a estas cuestiones. Se ha realizado varios estudios sobre la base de un gran programa de electrificación rural fotovoltaica real llevado a cabo en Marruecos con más de 13.000 sistemas solares domiciliarios instalados. Sobre la base de este programa se ha hecho una evaluación en profundidad de la fiabilidad de los sistemas solares a partir de los datos de mantenimiento recogidos durante 5 años con más de 80.000 inputs. Los resultados han permitido establecer las funciones de fiabilidad de los equipos tal y como se comportan en condiciones reales de operación, las tasas de fallos y los tiempos medios hasta el fallo para los principales componentes del sistema, siendo este el primer caso de divulgación de resultados de este tipo en el campo de la electrificación rural fotovoltaica. Los dos principales componentes del sistema solar domiciliario, la batería y el módulo fotovoltaico, han sido analizados en campo a través de una muestra de 41 sistemas trabajando en condiciones reales pertenecientes al programa solar marroquí. Por un lado se ha estudiado la degradación de la capacidad de las baterías y por otro la degradación de potencia de los módulos fotovoltaicos. En el caso de las baterías, los resultados nos han permitido caracterizar la curva de degradación en capacidad llegando a obtener una propuesta de nueva definición del umbral de vida útil de las baterías en electrificación rural. También sobre la base del programa solar de Marruecos se ha llevado a cabo un estudio de caracterización de los costes reales de operación y mantenimiento a partir de la base de datos de contabilidad del programa registrados durante 5 años. Los resultados del estudio han permitido definir cuáles son costes que más incidencia tienen en el coste global. Se han obtenido los costes unitarios por sistema instalado y se han calculado los montantes de las cuotas de mantenimiento de los usuarios para garantizar la rentabilidad de la operación y mantenimiento. Finalmente, se propone un modelo de optimización matemática para diseñar estructuras de mantenimiento basado en los resultados de los estudios anteriores. La herramienta, elaborada mediante programación lineal entera mixta, se ha aplicado al programa marroquí con el fin de validar el modelo propuesto. ABSTRACT With 1,300 million people worldwide deprived of access to electricity (mostly in rural environments), photovoltaic solar energy has proven to be a cost‐effective solution and the only hope for electrifying the most remote inhabitants of the planet, where conventional electric grids do not reach because they are unaffordable. Almost all countries in the world have had some kind of rural photovoltaic electrification programme during the past 40 years, mainly the poorer countries, where through different organizational models, millions of solar home systems (small photovoltaic systems for domestic use) have been installed. During this long period, many barriers have been overcome, such as quality enhancement, cost reduction, the optimization of designing and sizing, financial availability, etc. Thanks to this, decentralized rural electrification has recently experienced a change of scale characterized by new programmes with thousands of solar home systems and long maintenance periods. Many of these large programmes are being developed with limited success, as they have generally been based on assumptions that do not correspond to reality, compromising the economic return that allows long term activity. In this scenario a new challenge emerges, which approaches the sustainability of large programmes. It is argued that the main cause of unprofitability is the unexpected high cost of the operation and maintenance of the solar systems. In fact, the lack of a paradigm in decentralized rural services has led to many private companies to carry out decentralized electrification programmes blindly. Issues such as the operation and maintenance cost structure or the reliability of the solar home system components have still not been characterized. This situation does not allow optimized maintenance structure to be designed to assure the sustainability and profitability of the operation and maintenance service. This PhD thesis aims to respond to these needs. Several studies have been carried out based on a real and large photovoltaic rural electrification programme carried out in Morocco with more than 13,000 solar home systems. An in‐depth reliability assessment has been made from a 5‐year maintenance database with more than 80,000 maintenance inputs. The results have allowed us to establish the real reliability functions, the failure rate and the main time to failure of the main components of the system, reporting these findings for the first time in the field of rural electrification. Both in‐field experiments on the capacity degradation of batteries and power degradation of photovoltaic modules have been carried out. During the experiments both samples of batteries and modules were operating under real conditions integrated into the solar home systems of the Moroccan programme. In the case of the batteries, the results have enabled us to obtain a proposal of definition of death of batteries in rural electrification. A cost assessment of the Moroccan experience based on a 5‐year accounting database has been carried out to characterize the cost structure of the programme. The results have allowed the major costs of the photovoltaic electrification to be defined. The overall cost ratio per installed system has been calculated together with the necessary fees that users would have to pay to make the operation and maintenance affordable. Finally, a mathematical optimization model has been proposed to design maintenance structures based on the previous study results. The tool has been applied to the Moroccan programme with the aim of validating the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La caracterización de módulos fotovoltaicos proporciona las especificaciones eléctricas que se necesitan para conocer los niveles de eficiencia energética que posee un módulo fotovoltaico de concentración. Esta caracterización se consigue a través de medidas de curvas IV, de igual manera que se obtienen para caracterizar los módulos convencionales. Este proyecto se ha realizado para la optimización y ampliación de un programa de medida y caracterización de hasta cuatro módulos fotovoltaicos que se encuentran en el exterior, sobre un seguidor. El programa, desarrollado en LabVIEW, opera sobre el sistema de medida, obteniendo los datos de caracterización del módulo que se está midiendo. Para ello en primer lugar se ha tomado como base una aplicación ya implementada y se ha analizado su funcionamiento para poder optimizarla y ampliarla para introducir nuevas prestaciones. La nueva prestación más relevante para la medida de los módulos, busca evitar que el módulo entre medida y medida, se encuentre disipando toda la energía que absorbe y se esté calentando. Esto se ha conseguido introduciendo una carga electrónica dentro del sistema de medida, que mantenga polarizado el módulo siempre y cuando, no se esté produciendo una medida sobre él. En este documento se describen los dispositivos que forman todo el sistema de medida, así como también se describe el software del programa. Además, se incluye un manual de usuario para un fácil manejo del programa. ABSTRACT. The aim of the characterization of concentrator photovoltaic modules (CPV) is to provide the electrical specifications to know the energy efficiency at operating conditions. This characterization is achieved through IV curves measures, the same way that they are obtained to characterize conventional silicon modules. The objective of this project is the optimization and improvement of a measurement and characterization system for CPV modules. A software has been developed in LabVIEW for the operation of the measurement system and data acquisition of the IV curves of the modules. At first, an already deployed application was taken as the basis and its operation was analyzed in order to optimize and extend to introduce new features. The more relevant update seeks to prevent the situation in which the module is dissipating all the energy between measurements. This has been achieved by introducing an electronic load into the measuring system. This load maintains the module biased at its maximum power point between measurement periods. This work describes the devices that take part in the measurement system, as well as the software program developed. In addition, a user manual is included for an easy handling of the program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La situación energética actual es insostenible y como consecuencia se plantea un escenario próximo orientado a conseguir un futuro energético sostenible que permita el desarrollo económico y el bienestar social. La situación ambiental actual está afectada directamente por la combustión de combustibles fósiles que en 2013 constituyeron el 81% de la energía primaria utilizada por el ser humano y son la principal fuente antropogénica de gases de efecto invernadero. Los informes del IPCC1, ponen de manifiesto que el cambio climático se ha consolidado durante los últimos años y en la conferencia de la ONU sobre cambio climático de París que se celebrará a finales de 2015, se pretende que los gobiernos suscriban un acuerdo universal para limitar las emisiones de gases de efecto invernadero y evitar que el incremento de la temperatura media global supere los 2°C. Por otra parte, en el interior de las ciudades es especialmente preocupante, por su efecto directo sobre la salud humana, el impacto ambiental producido por las emisiones de NOx que generan el transporte de personas y mercancías. El sector del transporte fue responsable en 2012 del 27,9% del consumo final de energía. Una vez expuesto el escenario energético y ambiental actual, en esta tesis, se analiza la eficiencia de un sistema autónomo fotovoltaico para la carga de baterías de vehículos eléctricos y el uso del mismo con otras cargas, con el objetivo de aprovechar al máximo la energía eléctrica generada y contribuir a la utilización de energía limpia que no produzca impacto ambiental. Como primer paso para el desarrollo de la tesis se hizo un estudio de trabajos previos comenzando por las primeras aplicaciones de la energía fotovoltaica en los vehículos solares para después pasar a trabajos más recientes enfocados al suministro de energía a los vehículos eléctricos. También se hizo este estudio sobre las metodologías de simulación en los sistemas fotovoltaicos y en el modelado de distintos componentes. Posteriormente se eligieron, dentro de la amplia oferta existente en el mercado, los componentes con características técnicas más adecuadas para este tipo de instalaciones y para las necesidades que se pretenden cubrir. A partir de los parámetros técnicos de los componentes elegidos para configurar la instalación autónoma y utilizando modelos contrastados de distintos componentes, se ha desarrollado un modelo de simulación en ordenador del sistema completo con el que se han hecho simulaciones con distintos modos de demanda de energía eléctrica, según los modos de carga disponibles en el vehículo eléctrico para corriente alterna monofásica de 230 V. También se han simulado distintos tamaños del generador fotovoltaico y del sistema de acumulación de energía eléctrica para poder determinar la influencia de estos parámetros en los balances energéticos del sistema. Utilizando recursos propios el doctorando ha realizado la instalación real de un sistema fotovoltaico que incluye sistema de acumulación e inversor en un edificio de su propiedad. Para la realización de la tesis, La Fundación de Fomento e Innovación Industrial (F2I2) ha facilitado al doctorando un dispositivo que permite realizar la alimentación del vehículo eléctrico en modo 2 (este modo emplea un adaptador que incorpora dispositivos de seguridad y se comunica con el vehículo permitiendo ajustar la velocidad de recarga) y que ha sido necesario para los trabajos desarrollados. Se ha utilizado la red eléctrica como sistema de apoyo de la instalación fotovoltaica para permitir la recarga en el modo 2 que requiere más potencia que la proporcionada por el sistema fotovoltaico instalado. Se han analizado mediante simulación distintos regímenes de carga que se han estudiado experimentalmente en la instalación realizada, a la vez que se han hecho ensayos que se han reproducido mediante simulación con los mismos valores de radiación solar y temperatura con objeto de contrastar el modelo. Se han comparado los resultados experimentales con los obtenidos mediante simulación con objeto de caracterizar el comportamiento del sistema de acumulación (energía eléctrica suministrada y tensión de salida en las baterías) y del generador fotovoltaico (energía eléctrica fotovoltaica suministrada). Por último, se ha realizado un estudio económico de la instalación autónoma fotovoltaica ejecutada y simulada. En el mismo se ha planteado la utilización de fondos propios (como realmente se ha llevado a cabo) y la utilización de financiación, para determinar dos posibles escenarios que pudieran ser de utilidad a un propietario de vehículo eléctrico. Se han comparado los resultados obtenidos en los dos escenarios propuestos del estudio económico del sistema, en cuanto a los parámetros de tiempo de retorno de la inversión, valor actual neto de la inversión y tasa interna de retorno de la misma. Las conclusiones técnicas obtenidas, permiten la utilización del sistema con los modos de carga ensayados y otro tipo de cargas que aprovechen la generación eléctrica del sistema. Las baterías ofrecen mejor comportamiento cuando el aporte fotovoltaico está presente, pero no considera adecuado la conexión de cargas elevadas a un sistema de acumulación de gel (plomo-acido) como el que se ha utilizado, debido al comportamiento de este tipo de baterías ante demandas de intensidad de corriente eléctrica elevadas. Por otra parte, el comportamiento de este tipo de baterías con valores de intensidad de corriente eléctrica inferiores a 10 A en ausencia de energía fotovoltaica, con el objetivo de utilizar la generación de energía eléctrica diaria acumulada en el sistema, sí resulta interesante y ofrece un buen comportamiento del sistema de acumulación. Las circunstancias actuales de mercado, que carece de sistemas de acumulación de litio con precios de compra interesantes, no han permitido poder experimentar este sistema de acumulación en la instalación autónoma fotovoltaica ejecutada, tampoco se ha podido obtener el favor de ningún fabricante para ello. Actualmente hay disponibles sistemas de acumulación en litio que no se comercializan en España y que serían adecuados para el sistema de acumulación de energía propuesto en este estudio, que deja abierta las puertas para futuros trabajos de investigación. Las conclusiones económicas obtenidas, rentabilizan el uso de una instalación autónoma fotovoltaica con consumo instantáneo, sin acumulación de energía eléctrica. El futuro de conexión a red por parte de estas instalaciones, cuando se regule, aportará un incentivo económico para rentabilizar con menos tiempo las instalaciones autónomas fotovoltaicas, esto también deja la puerta abierta a futuros trabajos de investigación. El sistema de acumulación de energía aporta el mayor peso económico de inversión en este tipo de instalaciones. La instalación estudiada aporta indicadores económicos que la hacen rentable, pero se necesitaría que los precios de acumulación de la energía en sistemas eficientes estén comprendidos entre 100-200 €/kWh para que el sistema propuesto en este trabajo resulte atractivo a un potencial propietario de un vehículo eléctrico. ABSTRACT The current energy situation is untenable; it poses a scenario next focused on reaching a sustainable energy future, to allow economic development and social welfare. The environmental current situation is affected directly by the combustion of fossil fuels that in 2013 constituted 81 % of the primary energy used by the human being and they are the principal source human of greenhouse gases. The reports of the IPCC2, they reveal that the climate change has consolidated during the last years and in the conference of the UNO on climate change of Paris that will be celebrated at the end of 2015, there is claimed that the governments sign a universal agreement to limit the emission of greenhouse gases and to prevent that the increase of the global average temperature overcomes them 2°C. On the other hand, inside the cities it is specially worrying, for his direct effect on the human health, the environmental impact produced by the NOx emissions that generate the persons' transport and goods. The sector of the transport was responsible in 2012 of 27,9 % of the final consumption of energy. Once exposed the scenario and present environmental energy, in this thesis, it has analyzed the efficiency of an autonomous photovoltaic system for charging electric vehicles, and the use of the same with other workloads, with the objective to maximize the electrical energy generated and contribute to the use of clean energy that does not produce environmental impact. Since the first step for the development of the thesis did to itself a study of previous works beginning for the first applications of the photovoltaic power in the solar vehicles later to go on to more recent works focused on the power supply to the electrical vehicles. Also this study was done on the methodologies of simulation in the photovoltaic systems and in the shaped one of different components. Later they were chosen, inside the wide existing offer on the market, the components with technical characteristics more adapted for this type of facilities and for the needs that try to cover. From the technical parameters of the components chosen to form the autonomous installation and using models confirmed of different components, a model of simulation has developed in computer of the complete system with which simulations have been done by different manners of demand of electric power, according to the available manners of load in the electrical vehicle for single-phase alternating current of 230 V. Also there have been simulated different sizes of the photovoltaic generator and of the system of accumulation of electric power to be able to determine the influence of these parameters in the energy balances of the system. Using own resources the PhD student has realized a real installation of a photovoltaic system that includes system of accumulation and investing in a building of his property. For the accomplishment of the thesis, The Foundation of Promotion and Industrial Innovation (F2I2) it has facilitated to the PhD student a device that allows to realize the supply of the electrical vehicle in way 2 (this way uses an adapter that incorporates safety devices and communicates with the vehicle allowing to fit the speed of recharges) and that has been necessary for the developed works. The electrical network has been in use as system of support of the photovoltaic installation for allowing it her recharges in the way 2 that more power needs that provided by the photovoltaic installed system. There have been analyzed by means of simulation different rate of load that have been studied experimentally in the realized installation, simultaneously that have done to themselves tests that have reproduced by means of simulation with the same values of solar radiation and temperature in order the model contrasted. The experimental results have been compared by the obtained ones by means of simulation in order to characterize the behavior of the system of accumulation (supplied electric power and tension of exit in the batteries) and of the photovoltaic generator (photovoltaic supplied electric power). Finally, there has been realized an economic study of the autonomous photovoltaic executed and simulated installation. In the same one there has appeared the utilization of own funds (since really it has been carried out) and the utilization of financing, to determine two possible scenes that could be of usefulness to an owner of electrical vehicle. There have been compared the results obtained in both scenes proposed of the economic study of the system, as for the parameters of time of return of the investment, current clear value of the investment and rate hospitalizes of return of the same one. The technical obtained conclusions, they make the utilization of the system viable with the manners of load tested and another type of loads of that they take advantage the electrical generation of the system. The batteries offer better behavior when the photovoltaic contribution is present, but he does not consider to be suitable the connection of loads risen up to a system of accumulation of gel (lead - acid) as the one that has been in use, due to the behavior of this type of batteries before demands of intensity of electrical current raised. On the other hand, the behavior of this type of batteries with low values of intensity of electrical current to 10 To in absence of photovoltaic power, with the aim to use the generation of daily electric power accumulated in the system, yes turns out to be interesting and offers a good behavior of the system of accumulation. The current circumstances of market, which lacks systems of accumulation of lithium with interesting purchase prices, have not allowed to be able to experience this system of accumulation in the autonomous photovoltaic executed installation, neither one could have obtained the favor of any manufacturer for it. Nowadays there are available systems of accumulation in lithium that is not commercialized in Spain and that they would be adapted for the system of accumulation of energy proposed in this study, which makes the doors opened for future works of investigation. The economic obtained conclusions; they make more profitable the use of an autonomous photovoltaic installation with instantaneous consumption, without accumulation of electric power. The future of connection to network on the part of these facilities, when it is regulated, will contribute an economic incentive to make profitable with less time the autonomous photovoltaic facilities, this also leaves the door opened for future works of investigation. The system of accumulation of energy contributes the major economic weight of investment in this type of facilities. The studied installation contributes economic indicators that make her profitable, but it would be necessary that the prices of accumulation of the energy in efficient systems are understood between 100-200 € in order that the system proposed in this work turns out to be attractive to a proprietary potential of an electrical vehicle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis desarrolla una metodología para comparar la viabilidad económica de distintas tecnologías de suministro energético para el bombeo de agua de riego en invernaderos tanto en España, Cuba o Pakistán (países con diferentes estados de desarrollo). En concreto, se analiza el bombeo directo eólico, el bombeo solar fotovoltaico, el bombeo con generadores diesel, y mediante conexión a la red eléctrica. El análisis tuvo en cuenta los recursos eólicos y solar, la altura de elevación, el tamaño de invernadero, la distancia al punto de conexión a la red, las necesidades de almacenamiento de agua y las fechas de siembra. Las comparaciones se realizaron usando un criterio técnico-económico basado en el coste normalizado de la energía de cada tecnología. En los tres países, el bombeo directo eólico no sería económicamente recomendable, en el caso de existir una conexión a la red. Allí donde no existe conexión a la red, la distancia a la red y los recursos eólico y solar disponibles son los factores clave a tener en cuenta a la hora de decidir entre las diferentes tecnologías. Por otro lado, la altura del bombeo del agua tiene una gran influencia sobre la viabilidad económica del bombeo directo eólico, mucho más que, por ejemplo, en el caso del bombeo solar fotovoltaico. En general, los resultados revelan que los factores críticos a tener en cuenta a la hora de elegir la solución energética óptima son diferentes en cada uno de los países. En el caso de España, la proximidad a los puntos de conexión de la red eléctrica determina que ésta sea la mejor opción. El limitado potencial eólico es el factor limitante en Pakistán. En Cuba, la altura del bombeo, la distancia al punto de conexión de la red eléctrica y el almacenamiento de agua necesario son los factores críticos para determinar la tecnología más apropiada para el bombeo al disponer de buenos recursos solar y eólico. ABSTRACT This thesis develops a methodology for comparing the economic feasibility of wind pump technology, solar photovoltaic pumping, diesel generators, and connection to the electrical grid to provide energy for pumping irrigation water in commercial greenhouses in Spain, Cuba and Pakistan (countries with different developmental backgrounds). The analysis studied the importance of the wind and solar resource, the water elevation, the greenhouse size, the distance to the grid, the pumping elevation, the water storage tank volume requirements, and the planting dates. Comparisons were made in terms of the levelised cost of energy associated with each technology. For all three countries, if a grid connection was already in place, installing wind pumps would be economically unwise. Where no grid connection exists, the distance to the grid and the wind and solar resources available are key factors to be taken into consideration when deciding between options. Finally, the water elevation has a major influence on the economic feasibility of wind pump technology, much more than, for example, on solar photovoltaic pumping technology. The results reveal that, generally, the critical factors to consider when making energy management decisions differ depending between countries. In Spain, the proximity of the electrical grid makes the connection to it the best option. In Pakistan, scarce wind resources are a serious limiting factor. Cuba, however, has good wind and solar resources; water elevation, distance to the grid, and water storage needed are the critical factors when determining the economic feasibility of wind pumping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoy en día, el proceso de un proyecto sostenible persigue realizar edificios de elevadas prestaciones que son, energéticamente eficientes, saludables y económicamente viables utilizando sabiamente recursos renovables para minimizar el impacto sobre el medio ambiente reduciendo, en lo posible, la demanda de energía, lo que se ha convertido, en la última década, en una prioridad. La Directiva 2002/91/CE "Eficiencia Energética de los Edificios" (y actualizaciones posteriores) ha establecido el marco regulatorio general para el cálculo de los requerimientos energéticos mínimos. Desde esa fecha, el objetivo de cumplir con las nuevas directivas y protocolos ha conducido las políticas energéticas de los distintos países en la misma dirección, centrándose en la necesidad de aumentar la eficiencia energética en los edificios, la adopción de medidas para reducir el consumo, y el fomento de la generación de energía a través de fuentes renovables. Los edificios de energía nula o casi nula (ZEB, Zero Energy Buildings ó NZEB, Net Zero Energy Buildings) deberán convertirse en un estándar de la construcción en Europa y con el fin de equilibrar el consumo de energía, además de reducirlo al mínimo, los edificios necesariamente deberán ser autoproductores de energía. Por esta razón, la envolvente del edifico y en particular las fachadas son importantes para el logro de estos objetivos y la tecnología fotovoltaica puede tener un papel preponderante en este reto. Para promover el uso de la tecnología fotovoltaica, diferentes programas de investigación internacionales fomentan y apoyan soluciones para favorecer la integración completa de éstos sistemas como elementos arquitectónicos y constructivos, los sistemas BIPV (Building Integrated Photovoltaic), sobre todo considerando el próximo futuro hacia edificios NZEB. Se ha constatado en este estudio que todavía hay una falta de información útil disponible sobre los sistemas BIPV, a pesar de que el mercado ofrece una interesante gama de soluciones, en algunos aspectos comparables a los sistemas tradicionales de construcción. Pero por el momento, la falta estandarización y de una regulación armonizada, además de la falta de información en las hojas de datos técnicos (todavía no comparables con las mismas que están disponibles para los materiales de construcción), hacen difícil evaluar adecuadamente la conveniencia y factibilidad de utilizar los componentes BIPV como parte integrante de la envolvente del edificio. Organizaciones internacionales están trabajando para establecer las normas adecuadas y procedimientos de prueba y ensayo para comprobar la seguridad, viabilidad y fiabilidad estos sistemas. Sin embargo, hoy en día, no hay reglas específicas para la evaluación y caracterización completa de un componente fotovoltaico de integración arquitectónica de acuerdo con el Reglamento Europeo de Productos de la Construcción, CPR 305/2011. Los productos BIPV, como elementos de construcción, deben cumplir con diferentes aspectos prácticos como resistencia mecánica y la estabilidad; integridad estructural; seguridad de utilización; protección contra el clima (lluvia, nieve, viento, granizo), el fuego y el ruido, aspectos que se han convertido en requisitos esenciales, en la perspectiva de obtener productos ambientalmente sostenibles, saludables, eficientes energéticamente y económicamente asequibles. Por lo tanto, el módulo / sistema BIPV se convierte en una parte multifuncional del edificio no sólo para ser física y técnicamente "integrado", además de ser una oportunidad innovadora del diseño. Las normas IEC, de uso común en Europa para certificar módulos fotovoltaicos -IEC 61215 e IEC 61646 cualificación de diseño y homologación del tipo para módulos fotovoltaicos de uso terrestre, respectivamente para módulos fotovoltaicos de silicio cristalino y de lámina delgada- atestan únicamente la potencia del módulo fotovoltaico y dan fe de su fiabilidad por un período de tiempo definido, certificando una disminución de potencia dentro de unos límites. Existe también un estándar, en parte en desarrollo, el IEC 61853 (“Ensayos de rendimiento de módulos fotovoltaicos y evaluación energética") cuyo objetivo es la búsqueda de procedimientos y metodologías de prueba apropiados para calcular el rendimiento energético de los módulos fotovoltaicos en diferentes condiciones climáticas. Sin embargo, no existen ensayos normalizados en las condiciones específicas de la instalación (p. ej. sistemas BIPV de fachada). Eso significa que es imposible conocer las efectivas prestaciones de estos sistemas y las condiciones ambientales que se generan en el interior del edificio. La potencia nominal de pico Wp, de un módulo fotovoltaico identifica la máxima potencia eléctrica que éste puede generar bajo condiciones estándares de medida (STC: irradición 1000 W/m2, 25 °C de temperatura del módulo y distribución espectral, AM 1,5) caracterizando eléctricamente el módulo PV en condiciones específicas con el fin de poder comparar los diferentes módulos y tecnologías. El vatio pico (Wp por su abreviatura en inglés) es la medida de la potencia nominal del módulo PV y no es suficiente para evaluar el comportamiento y producción del panel en términos de vatios hora en las diferentes condiciones de operación, y tampoco permite predecir con convicción la eficiencia y el comportamiento energético de un determinado módulo en condiciones ambientales y de instalación reales. Un adecuado elemento de integración arquitectónica de fachada, por ejemplo, debería tener en cuenta propiedades térmicas y de aislamiento, factores como la transparencia para permitir ganancias solares o un buen control solar si es necesario, aspectos vinculados y dependientes en gran medida de las condiciones climáticas y del nivel de confort requerido en el edificio, lo que implica una necesidad de adaptación a cada contexto específico para obtener el mejor resultado. Sin embargo, la influencia en condiciones reales de operación de las diferentes soluciones fotovoltaicas de integración, en el consumo de energía del edificio no es fácil de evaluar. Los aspectos térmicos del interior del ambiente o de iluminación, al utilizar módulos BIPV semitransparentes por ejemplo, son aún desconocidos. Como se dijo antes, la utilización de componentes de integración arquitectónica fotovoltaicos y el uso de energía renovable ya es un hecho para producir energía limpia, pero también sería importante conocer su posible contribución para mejorar el confort y la salud de los ocupantes del edificio. Aspectos como el confort, la protección o transmisión de luz natural, el aislamiento térmico, el consumo energético o la generación de energía son aspectos que suelen considerarse independientemente, mientras que todos juntos contribuyen, sin embargo, al balance energético global del edificio. Además, la necesidad de dar prioridad a una orientación determinada del edificio, para alcanzar el mayor beneficio de la producción de energía eléctrica o térmica, en el caso de sistemas activos y pasivos, respectivamente, podría hacer estos últimos incompatibles, pero no necesariamente. Se necesita un enfoque holístico que permita arquitectos e ingenieros implementar sistemas tecnológicos que trabajen en sinergia. Se ha planteado por ello un nuevo concepto: "C-BIPV, elemento fotovoltaico consciente integrado", esto significa necesariamente conocer los efectos positivos o negativos (en términos de confort y de energía) en condiciones reales de funcionamiento e instalación. Propósito de la tesis, método y resultados Los sistemas fotovoltaicos integrados en fachada son a menudo soluciones de vidrio fácilmente integrables, ya que por lo general están hechos a medida. Estos componentes BIPV semitransparentes, integrados en el cerramiento proporcionan iluminación natural y también sombra, lo que evita el sobrecalentamiento en los momentos de excesivo calor, aunque como componente estático, asimismo evitan las posibles contribuciones pasivas de ganancias solares en los meses fríos. Además, la temperatura del módulo varía considerablemente en ciertas circunstancias influenciada por la tecnología fotovoltaica instalada, la radiación solar, el sistema de montaje, la tipología de instalación, falta de ventilación, etc. Este factor, puede suponer un aumento adicional de la carga térmica en el edificio, altamente variable y difícil de cuantificar. Se necesitan, en relación con esto, más conocimientos sobre el confort ambiental interior en los edificios que utilizan tecnologías fotovoltaicas integradas, para abrir de ese modo, una nueva perspectiva de la investigación. Con este fin, se ha diseñado, proyectado y construido una instalación de pruebas al aire libre, el BIPV Env-lab "BIPV Test Laboratory", para la caracterización integral de los diferentes módulos semitransparentes BIPV. Se han definido también el método y el protocolo de ensayos de caracterización en el contexto de un edificio y en condiciones climáticas y de funcionamiento reales. Esto ha sido posible una vez evaluado el estado de la técnica y la investigación, los aspectos que influyen en la integración arquitectónica y los diferentes tipos de integración, después de haber examinado los métodos de ensayo para los componentes de construcción y fotovoltaicos, en condiciones de operación utilizadas hasta ahora. El laboratorio de pruebas experimentales, que consiste en dos habitaciones idénticas a escala real, 1:1, ha sido equipado con sensores y todos los sistemas de monitorización gracias a los cuales es posible obtener datos fiables para evaluar las prestaciones térmicas, de iluminación y el rendimiento eléctrico de los módulos fotovoltaicos. Este laboratorio permite el estudio de tres diferentes aspectos que influencian el confort y consumo de energía del edificio: el confort térmico, lumínico, y el rendimiento energético global (demanda/producción de energía) de los módulos BIPV. Conociendo el balance de energía para cada tecnología solar fotovoltaica experimentada, es posible determinar cuál funciona mejor en cada caso específico. Se ha propuesto una metodología teórica para la evaluación de estos parámetros, definidos en esta tesis como índices o indicadores que consideran cuestiones relacionados con el bienestar, la energía y el rendimiento energético global de los componentes BIPV. Esta metodología considera y tiene en cuenta las normas reglamentarias y estándares existentes para cada aspecto, relacionándolos entre sí. Diferentes módulos BIPV de doble vidrio aislante, semitransparentes, representativos de diferentes tecnologías fotovoltaicas (tecnología de silicio monocristalino, m-Si; de capa fina en silicio amorfo unión simple, a-Si y de capa fina en diseleniuro de cobre e indio, CIS) fueron seleccionados para llevar a cabo una serie de pruebas experimentales al objeto de demostrar la validez del método de caracterización propuesto. Como resultado final, se ha desarrollado y generado el Diagrama Caracterización Integral DCI, un sistema gráfico y visual para representar los resultados y gestionar la información, una herramienta operativa útil para la toma de decisiones con respecto a las instalaciones fotovoltaicas. Este diagrama muestra todos los conceptos y parámetros estudiados en relación con los demás y ofrece visualmente toda la información cualitativa y cuantitativa sobre la eficiencia energética de los componentes BIPV, por caracterizarlos de manera integral. ABSTRACT A sustainable design process today is intended to produce high-performance buildings that are energy-efficient, healthy and economically feasible, by wisely using renewable resources to minimize the impact on the environment and to reduce, as much as possible, the energy demand. In the last decade, the reduction of energy needs in buildings has become a top priority. The Directive 2002/91/EC “Energy Performance of Buildings” (and its subsequent updates) established a general regulatory framework’s methodology for calculation of minimum energy requirements. Since then, the aim of fulfilling new directives and protocols has led the energy policies in several countries in a similar direction that is, focusing on the need of increasing energy efficiency in buildings, taking measures to reduce energy consumption, and fostering the use of renewable sources. Zero Energy Buildings or Net Zero Energy Buildings will become a standard in the European building industry and in order to balance energy consumption, buildings, in addition to reduce the end-use consumption should necessarily become selfenergy producers. For this reason, the façade system plays an important role for achieving these energy and environmental goals and Photovoltaic can play a leading role in this challenge. To promote the use of photovoltaic technology in buildings, international research programs encourage and support solutions, which favors the complete integration of photovoltaic devices as an architectural element, the so-called BIPV (Building Integrated Photovoltaic), furthermore facing to next future towards net-zero energy buildings. Therefore, the BIPV module/system becomes a multifunctional building layer, not only physically and functionally “integrated” in the building, but also used as an innovative chance for the building envelope design. It has been found in this study that there is still a lack of useful information about BIPV for architects and designers even though the market is providing more and more interesting solutions, sometimes comparable to the existing traditional building systems. However at the moment, the lack of an harmonized regulation and standardization besides to the non-accuracy in the technical BIPV datasheets (not yet comparable with the same ones available for building materials), makes difficult for a designer to properly evaluate the fesibility of this BIPV components when used as a technological system of the building skin. International organizations are working to establish the most suitable standards and test procedures to check the safety, feasibility and reliability of BIPV systems. Anyway, nowadays, there are no specific rules for a complete characterization and evaluation of a BIPV component according to the European Construction Product Regulation, CPR 305/2011. BIPV products, as building components, must comply with different practical aspects such as mechanical resistance and stability; structural integrity; safety in use; protection against weather (rain, snow, wind, hail); fire and noise: aspects that have become essential requirements in the perspective of more and more environmentally sustainable, healthy, energy efficient and economically affordable products. IEC standards, commonly used in Europe to certify PV modules (IEC 61215 and IEC 61646 respectively crystalline and thin-film ‘Terrestrial PV Modules-Design Qualification and Type Approval’), attest the feasibility and reliability of PV modules for a defined period of time with a limited power decrease. There is also a standard (IEC 61853, ‘Performance Testing and Energy Rating of Terrestrial PV Modules’) still under preparation, whose aim is finding appropriate test procedures and methodologies to calculate the energy yield of PV modules under different climate conditions. Furthermore, the lack of tests in specific conditions of installation (e.g. façade BIPV devices) means that it is difficult knowing the exact effective performance of these systems and the environmental conditions in which the building will operate. The nominal PV power at Standard Test Conditions, STC (1.000 W/m2, 25 °C temperature and AM 1.5) is usually measured in indoor laboratories, and it characterizes the PV module at specific conditions in order to be able to compare different modules and technologies on a first step. The “Watt-peak” is not enough to evaluate the panel performance in terms of Watt-hours of various modules under different operating conditions, and it gives no assurance of being able to predict the energy performance of a certain module at given environmental conditions. A proper BIPV element for façade should take into account thermal and insulation properties, factors as transparency to allow solar gains if possible or a good solar control if necessary, aspects that are linked and high dependent on climate conditions and on the level of comfort to be reached. However, the influence of different façade integrated photovoltaic solutions on the building energy consumption is not easy to assess under real operating conditions. Thermal aspects, indoor temperatures or luminance level that can be expected using building integrated PV (BIPV) modules are not well known. As said before, integrated photovoltaic BIPV components and the use of renewable energy is already a standard for green energy production, but would also be important to know the possible contribution to improve the comfort and health of building occupants. Comfort, light transmission or protection, thermal insulation or thermal/electricity power production are aspects that are usually considered alone, while all together contribute to the building global energy balance. Besides, the need to prioritize a particular building envelope orientation to harvest the most benefit from the electrical or thermal energy production, in the case of active and passive systems respectively might be not compatible, but also not necessary. A holistic approach is needed to enable architects and engineers implementing technological systems working in synergy. A new concept have been suggested: “C-BIPV, conscious integrated BIPV”. BIPV systems have to be “consciously integrated” which means that it is essential to know the positive and negative effects in terms of comfort and energy under real operating conditions. Purpose of the work, method and results The façade-integrated photovoltaic systems are often glass solutions easily integrable, as they usually are custommade. These BIPV semi-transparent components integrated as a window element provides natural lighting and shade that prevents overheating at times of excessive heat, but as static component, likewise avoid the possible solar gains contributions in the cold months. In addition, the temperature of the module varies considerably in certain circumstances influenced by the PV technology installed, solar radiation, mounting system, lack of ventilation, etc. This factor may result in additional heat input in the building highly variable and difficult to quantify. In addition, further insights into the indoor environmental comfort in buildings using integrated photovoltaic technologies are needed to open up thereby, a new research perspective. This research aims to study their behaviour through a series of experiments in order to define the real influence on comfort aspects and on global energy building consumption, as well as, electrical and thermal characteristics of these devices. The final objective was to analyze a whole set of issues that influence the global energy consumption/production in a building using BIPV modules by quantifying the global energy balance and the BIPV system real performances. Other qualitative issues to be studied were comfort aspect (thermal and lighting aspects) and the electrical behaviour of different BIPV technologies for vertical integration, aspects that influence both energy consumption and electricity production. Thus, it will be possible to obtain a comprehensive global characterization of BIPV systems. A specific design of an outdoor test facility, the BIPV Env-lab “BIPV Test Laboratory”, for the integral characterization of different BIPV semi-transparent modules was developed and built. The method and test protocol for the BIPV characterization was also defined in a real building context and weather conditions. This has been possible once assessed the state of the art and research, the aspects that influence the architectural integration and the different possibilities and types of integration for PV and after having examined the test methods for building and photovoltaic components, under operation conditions heretofore used. The test laboratory that consists in two equivalent test rooms (1:1) has a monitoring system in which reliable data of thermal, daylighting and electrical performances can be obtained for the evaluation of PV modules. The experimental set-up facility (testing room) allows studying three different aspects that affect building energy consumption and comfort issues: the thermal indoor comfort, the lighting comfort and the energy performance of BIPV modules tested under real environmental conditions. Knowing the energy balance for each experimented solar technology, it is possible to determine which one performs best. A theoretical methodology has been proposed for evaluating these parameters, as defined in this thesis as indices or indicators, which regard comfort issues, energy and the overall performance of BIPV components. This methodology considers the existing regulatory standards for each aspect, relating them to one another. A set of insulated glass BIPV modules see-through and light-through, representative of different PV technologies (mono-crystalline silicon technology, mc-Si, amorphous silicon thin film single junction, a-Si and copper indium selenide thin film technology CIS) were selected for a series of experimental tests in order to demonstrate the validity of the proposed characterization method. As result, it has been developed and generated the ICD Integral Characterization Diagram, a graphic and visual system to represent the results and manage information, a useful operational tool for decision-making regarding to photovoltaic installations. This diagram shows all concepts and parameters studied in relation to each other and visually provides access to all the results obtained during the experimental phase to make available all the qualitative and quantitative information on the energy performance of the BIPV components by characterizing them in a comprehensive way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new model for characterizing the energetic behavior of grid connected PV inverters. The model has been obtained from a detailed study of main loss processes in small size PV inverters in the market. The main advantage of the used method is to obtain a model that comprises two antagonistic features, since both are simple, easy to compute and apply, and accurate. One of the main features of this model is how it handles the maximum power point tracking (MPPT) and the efficiency: in both parts the model uses the same approach and it is achieved by two resistive elements which simulate the losses inherent to each parameter. This makes this model easy to implement, compact and refined. The model presented here also includes other parameters, such as start threshold, standby consumption and islanding behavior. In order to validate the model, the values of all the parameters listed above have been obtained and adjusted using field measurements for several commercial inverters, and the behavior of the model applied to a particular inverter has been compared with real data under different working conditions, taken from a facility located in Madrid. The results show a good fit between the model values and the real data. As an example, the model has been implemented in PSPICE electronic simulator, and this approach has been used to teach grid-connected PV systems. The use of this model for the maintenance of working PV facilities is also shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente proyecto tiene la finalidad de elaborar las perspectivas de futuro de la energía solar fotovoltaica, especialmente en España. Para ello se analiza en profundidad la tecnología fotovoltaica y su industria a nivel mundial para conocer en qué punto de desarrollo se encuentra. También se detalla la evolución del mercado fotovoltaico a nivel mundial, realzando los factores más importantes que lo han hecho posible. Para ir aproximándose al mercado fotovoltaico en España, se estudia más en profundidad el mercado fotovoltaico europeo. No sería suficiente analizar la tecnología y la evolución del mercado para realizar perspectivas probables, por lo que se realiza un estudio del coste de la tecnología con todos los factores asociados. Destaca el estudio de coste de la instalación fotovoltaica, formada por el módulo y el BoS, y el coste de generación mediante instalaciones fotovoltaicas. Siendo la energía solar fotovoltaica una tecnología muy ligada a la política, se estudia el marco regulatorio en Europa y un concepto que se está desarrollando cada vez más, el autoconsumo. También es importante, pese a que no haya tenido demasiada relevancia en el pasado, analizar la posibilidad del almacenamiento energético. En especial el uso de las baterías, su tecnología, mercado y cómo influirá al desarrollo de la energía solar fotovoltaica en la edificación. Con todos los factores nombrados anteriormente analizados, se podrá realizar las perspectivas del mercado fotovoltaico mundial y europeo para finalmente centrarse en el caso de España. En vistas a darle mayor importancia al desarrollo de la energía solar fotovoltaica en España, se realiza un estudio detallado del marco político, autoconsumo, potencia instalada y perspectivas del propio país, los cuales se resumirán en las conclusiones finales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde hace ya algunos años la búsqueda de energías alternativas a los combustibles fósiles es uno de los grandes retos a nivel mundial. Según los datos de la Agencia Estadounidense de Información sobre la Energía (EIA), el consumo energético en el mundo fue de 18 TW en 2015 y se espera que este consumo se dispare hasta alcanzar los 25 TW en 2035 y los 30 TW en 2050. Parece, por tanto, necesario dar respuesta a esta demanda creciente, y no solo considerar de dónde va a proceder esta energía sino también cuáles van a ser las consecuencias derivadas de este aumento en el consumo energético. Ya en el año 2007 la Academia Sueca reconoció, con la concesión del Premio Nobel de la Paz al ex vicepresidente de Estados Unidos Al Gore y al Grupo Intergubernamental de expertos sobre Cambio Climático (IPCC) de Naciones Unidas, la necesidad de concienciación de que el modelo de desarrollo que tenemos es ecológicamente insostenible. En este contexto, las energías renovables en general y, la energía solar en particular, tienen mucho que ofrecer. Una de las mayores ventajas de la energía solar respecto a las otras fuentes de energía es su enorme potencial, que los investigadores que trabajan en este campo resumen con la siguiente afirmación: la cantidad de energía solar que la Tierra recibe en una hora es mayor que el consumo mundial en el planeta durante todo un año. Al hablar de energía solar se suele distinguir entre energía solar térmica y energía solar fotovoltaica; la primera consiste en aprovechar la energía del sol para convertirla en calor, mientras que la segunda pretende transformar la radiación solar en electricidad por medio de unos dispositivos llamados células fotovoltaicas. Y es precisamente en este campo donde se centra este proyecto. El fundamento científico en el que se basan las células fotovoltaicas es el efecto fotoeléctrico, descubierto por Becquerel en 1839. No obstante, tendrían que pasar más de cien años hasta que investigadores de los laboratorios Bell en 1954 desarrollaran una célula de silicio monocristalino con un rendimiento del 6%. Y en 1958, con el lanzamiento del satélite Vangard I equipado con paneles solares se pudo demostrar la viabilidad de esta tecnología. Desde entonces, la investigación en esta área ha permitido desarrollar dispositivos con eficiencias superiores al 20%. No obstante, la fotovoltaica tradicional basada en elementos semiconductores tipo silicio presenta algunos inconvenientes como el impacto visual de los parques solares, los costes elevados o los rendimientos no muy altos. El descubrimiento de materiales orgánicos semiconductores, reconocido con el Premio Nobel de Química a Heeger, MacDiarmid y Shirakawa en 1976, ha permitido ampliar el campo de la fotovoltaica, ofreciendo la posibilidad de desarrollar células solares orgánicas frente a las células tradicionales inorgánicas. Las células fotovoltaicas orgánicas resultan atractivas ya que, en principio, presentan ventajas como reducción de costes y facilidad de procesado: los materiales orgánicos se pueden elaborar mediante procesos de impresión y recubrimiento de alta velocidad, aerosoles o impresión por inyección y se podrían aplicar como una pintura sobre superficies, tejados o edificios. La transformación de la energía solar en corriente eléctrica es un proceso que transcurre en varias etapas: 1. Absorción del fotón por parte del material orgánico. 2. Formación de un excitón (par electrón-hueco), donde el electrón, al absorber el fotón, es promovido a un nivel energético superior dejando un hueco en el nivel energético en el que se encontraba inicialmente. 3. Difusión del excitón, siendo muy decisiva la morfología del dispositivo. 4. Disociación del excitón y transporte de cargas, lo que requiere movilidades altas de los portadores de cargas. 5. Recolección de cargas en los electrodos. En el diseño de las células solares orgánicas, análogamente a los semiconductores tipo p y tipo n inorgánicos, se suelen combinar dos tipos de materiales orgánicos: un material orgánico denominado dador, que absorbe el fotón y que a continuación deberá ceder el electrón a un segundo material orgánico, denominado aceptor. Para que la célula resulte eficaz es necesario que se cumplan simultáneamente varios requisitos: 1. La energía del fotón incidente debe ser superior a la diferencia de energía entre los orbitales frontera del material orgánico, el HOMO (orbital molecular ocupado de más alta energía) y el LUMO (orbital desocupado de menor energía). Para ello, se necesitan materiales orgánicos semiconductores que presenten una diferencia de energía entre los orbitales frontera (ELUMO-EHOMO= band gap) menor de 2 eV. Materiales orgánicos con estas características son los polímeros conjugados, donde alternan dobles enlaces carbono-carbono con enlaces sencillos carbono-carbono. Uno de los polímeros orgánicos más utilizados como material dador es el P3HT (poli-3-hexiltiofeno). 2. Tanto el material orgánico aceptor como el material orgánico dador deben presentar movilidades altas para los portadores de carga, ya sean electrones o huecos. Este es uno de los campos en los que los materiales orgánicos se encuentran en clara desventaja frente a los materiales inorgánicos: la movilidad de electrones en el silicio monocristalino es 1500 cm2V-1s-1 y en el politiofeno tan solo 10-5 cm2V-1s-1. La movilidad de los portadores de carga aparece muy relacionada con la estructura del material, cuanto más cristalino sea el material, es decir, cuanto mayor sea su grado de organización, mejor será la movilidad. Este proyecto se centra en la búsqueda de materiales orgánicos que puedan funcionar como dadores en el dispositivo fotovoltaico. Y en lugar de centrarse en materiales de tipo polimérico, se ha preferido explorar otra vía: materiales orgánicos semiconductores pero con estructura de moléculas pequeñas. Hay varias razones para intentar sustituir los materiales poliméricos por moléculas pequeñas como, por ejemplo, la difícil reproducibilidad de resultados que se encuentra con los materiales poliméricos y su baja cristalinidad, en general. Entre las moléculas orgánicas sencillas que pudieran ser utilizadas como el material dador en una célula fotovoltaica orgánica llama la atención el atractivo de las moléculas de epindolidiona y quinacridona. En los dos casos se trata de moléculas planas, con enlaces conjugados y que presentan anillos condensados, cuatro en el caso de la epindolidiona y cinco en el caso de la quinacridona. Además ambos compuestos aparecen doblemente funcionalizados con grupos dadores de enlace de hidrógeno (NH) y aceptores (grupos carbonilo C=O). Por su estructura, estas moléculas podrían organizarse tanto en el plano, mediante la formación de varios enlaces de hidrógeno intermoleculares, como en apilamientos verticales tipo columnar, por las interacciones entre las superficies de los anillos aromáticos que forman parte de su estructura (tres en el caso de la quinacridona) y dos (en el caso de la epindolidiona). Esta organización debería traducirse en una mayor movilidad de portadores de carga, cumpliendo así con uno de los requisitos de un material orgánico para su aplicación en fotovoltaica. De estas dos moléculas, en este trabajo se profundiza en las moléculas tipo quinacridona, ya que el desarrollo de las moléculas tipo epindolidiona se llevó a cabo en un proyecto de investigación financiado por una beca Repsol y concedida a Guillermo Menéndez, alumno del Grado en Tecnologías Industriales de esta escuela. La quinacridona es uno de los pigmentos más utilizados y se estima que la venta anual de los mismos alcanza las 4.000 toneladas por año. Son compuestos muy estables tanto desde el punto de vista térmico como fotoquímico y su síntesis no resulta excesivamente compleja. Son además compuestos no tóxicos y la legislación autoriza su empleo en cosméticos y juguetes para niños. El inconveniente principal de la quinacridona es su elevada insolubilidad (soluble en ácido sulfúrico concentrado), por lo que aunque resulta un material muy atractivo para su aplicación en fotovoltaica, resulta difícil su implementación. De hecho, solo es posible su incorporación en dispositivos fotovoltaicos funcionalizando la quinacridona con algún grupo lábil que le proporcione la suficiente solubilidad para poder ser aplicado y posteriormente eliminar dicho grupo lábil. La propuesta inicial de este proyecto es intentar desarrollar quinacridonas que sean solubles en los disolventes orgánicos más habituales tipo cloruro de metileno o cloroformo, para de este modo poder cumplir con una de las ventajas que, a priori, ofrecen las células fotovoltaicas orgánicas frente a las inorgánicas, como es la facilidad de su procesado. El objetivo se centra, por lo tanto, en la preparación de quinacridonas solubles pero sin renunciar a su capacidad para formar enlaces de hidrógeno ni a su capacidad de apilamiento π-π, ya que se quiere mantener los valores de movilidad de portadores para la quinacridona (movilidad de huecos 0,2 cm2V-1s-1). En primer lugar se intenta la preparación de una quinacridona que presenta la ventaja de que los materiales de partida para su síntesis son comerciales: a partir del succinato de dimetilo y de 4-tetradecilanilina se podía acceder, en una síntesis de cuatro etapas, a la molécula deseada. La elección de la amina aromática con la sustitución en posición 4 presenta la ventaja de que en la etapa de doble ciclación necesaria en la síntesis, solo se forma uno de los regioisómeros posibles; este hecho es de gran relevancia para conseguir compuestos con altas movilidades, ya que la presencia de mezcla de regioisómeros, como se ha demostrado con otros compuestos como el P3HT, reduce considerablemente la movilidad de los portadores. Se obtiene así una quinacridona funcionalizada con dos cadenas lineales de 14 carbonos cada una en posiciones simétricas sobre los anillos aromáticos de los extremos. Se espera que la presencia de la superficie aromática plana y las dos cadenas lineales largas pueda conducir a una organización del material similar a la de un cristal líquido discótico. Sin embargo, el producto obtenido resulta ser tremendamente insoluble, no siendo suficiente las dos cadenas de 14 carbonos para aumentar su solubilidad respecto a la quinacridona sin funcionalizar. Se prepara entonces un derivado de esta quinacridona por alquilación de los nitrógenos. Este derivado, incapaz de formar enlaces de hidrógeno, resulta ser fácilmente soluble lo que proporciona una idea de la importancia de los enlaces de hidrógeno en la organización del compuesto. La idea inicial es conseguir, con una síntesis lo más sencilla posible, una quinacridona soluble, por lo que se decide utilizar la 4-t-butilanilina, también comercial, en lugar de la 4-tetradecilanilina. La cadena de t-butilo solo aporta cuatro átomos de carbono, pero su disposición (tres grupos metilo sobre un mismo átomo de carbono) suele conducir a resultados muy buenos en términos de solubilidad. Otra vez, la incorporación de los dos grupos t-butilo resulta insuficiente en términos de solubilidad del material. En estos momentos, y antes de explorar otro tipo de modificaciones sobre el esqueleto de quinacridona, en principio más complejos, se piensa en utilizar una amina aromática funcionalizada en la posición adyacente a la amina, de manera que el grupo funcional cumpliera una doble misión: por una parte, proporcionar solubilidad y por otra parte, perturbar ligeramente la formación de enlaces de hidrógeno, que han evidenciado ser una de las causas fundamentales para la insolubilidad del compuesto. Se realiza un análisis sobre cuáles podrían ser los grupos funcionales más idóneos en esta posición, valorando dos aspectos: el impedimento estérico que dificultaría la formación de enlaces de hidrógeno y la facilidad en su preparación. Ello conduce a optar por un grupo tioéter como candidato, ya que el 2-aminobencenotiol es un compuesto comercial y su adecuada funcionalización conduciría a una anilina con las propiedades deseadas. Se realiza simultáneamente la preparación de una quinacridona con una cadena de 18 átomos de carbono y otra quinacridona de cadena corta pero ramificada. Y finalmente, con estas quinacridonas se logra obtener compuestos solubles. Por último, se realiza el estudio de sus propiedades ópticas, mediante espectroscopia UV-Visible y fluorescencia, y se determinan experimentalmente los band gap, que se aproximan bastante a los resultados teóricos, en torno a 2,2 eV en disolución. No obstante, y aun cuando el band gap pueda parecer algo elevado, se sabe que en disolución las barreras energéticas son más elevadas que cuando el material se deposita en film. Por otra parte, todas las quinacridonas sintetizadas han demostrado una elevada estabilidad térmica. Como resumen final, el trabajo que aquí se presenta, ha permitido desarrollar una ruta sintética hacia derivados de quinacridona solubles con buenas perspectivas para su aplicación en dispositivos fotovoltaicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inverter in a photovoltaic system assures two essential functions. The first is to track the maximum power point of the system IV curve throughout variable environmental conditions. The second is to convert DC power delivered by the PV panels into AC power. Nowadays, in order to qualify inverters, manufacturers and certifying organisms use mainly European and/or CEC efficiency standards. The question arises if these are still representative of CPV system behaviour. We propose to use a set of CPV – specific weighted average and a representative dynamic response to have a better determination of the static and dynamic MPPT efficiencies. Four string-sized commercial inverters used in real CPV plants have been tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a primary-parallel secondaryseries multicore forward microinverter for photovoltaic ac-module application. The presented microinverter operates with a constant off-time boundary mode control, providing MPPT capability and unity power factor. The proposed multitransformer solution allows using low-profile unitary turns ratio transformers. Therefore, the transformers are better coupled and the overall performance of the microinverter is improved. Due to the multiphase solution, the number of devices increases but the current stress and losses per device are reduced contributing to an easier thermal management. Furthermore, the decoupling capacitor is split among the phases, contributing to a low-profile solution without electrolytic capacitors suitable to be mounted in the frame of a PV module. The proposed solution is compared to the classical parallel-interleaved approach, showing better efficiency in a wide power range and improving the weighted efficiency.