36 resultados para MARTEL-INLET
Resumo:
A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.
Resumo:
A numerical simulation of the aerodynamic behavior of high-speed trains under synthetic crosswinds at a 90º yaw angle is presented. The train geometry is the aerodynamic train model (ATM). Flow description based on numerical simulations is obtained using large eddy simulation (LES) and the commercial code ANSYSFluent V14.5. A crosswind whose averaged velocity and turbulence characteristics change with distance to the ground is imposed. Turbulent fluctuations that vary temporally and spatially are simulated with TurbSim code. The crosswind boundary condition is calculated for the distance the train runs during a simulation period. The inlet streamwise velocity boundary condition is generated using Taylor?s frozen turbulence hypothesis. The model gives a time history of the force and moments acting on the train; this includes averaged values, standard deviations and extreme values. Of particular interest are the spectra of the forces and moments, and the admittance spectra. For comparison, results obtained with LES and a uniform wind velocity fluctuating in time, and results obtained with Reynolds averaged Navier Stokes equations (RANS), and the averaged wind conditions, are also presented.
Resumo:
The effect of small mistuning in the forced response of a bladed disk is analyzed using a recently introduced methodology: the asymptotic mistuning model. The asymptotic mistuning model is an extremely reduced, simplified model that is derived directly from the full formulation of the mistuned bladed disk using a consistent perturbative procedure based on the relative smallness of the mistuning distortion. A detailed description of the derivation of the asymptotic mistuning model for a realistic bladed disk configuration is presented. The asymptotic mistuning model results for several different mistuning patterns and forcing conditions are compared with those from a high-resolution finite element model. The asymptotic mistuning model produces quantitatively accurate results, and, probably more relevant, it gives precise information about the factors (tuned modes and components of the mistuning pattern) that actually play a role in the vibrational forced response of mistuned bladed disks.
Resumo:
Energy storage at low maintenance cost is one of the key challenges for generating electricity from the solar energy. This paper presents the theoretical analysis (verified by CFD) of the night time performance of a recently proposed conceptual system that integrates thermal storage (via phase change materials) and thermophotovoltaics for power generation. These storage integrated solar thermophotovoltaic (SISTPV) systems are attractive owing to their simple design (no moving parts) and modularity compared to conventional Concentrated Solar Power (CSP) technologies. Importantly, the ability of high temperature operation of these systems allows the use of silicon (melting point of 1680 K) as the phase change material (PCM). Silicon's very high latent heat of fusion of 1800 kJ/kg and low cost ($1.70/kg), makes it an ideal heat storage medium enabling for an extremely high storage energy density and low weight modular systems. In this paper, the night time operation of the SISTPV system optimised for steady state is analysed. The results indicate that for any given PCM length, a combination of small taper ratio and large inlet hole-to-absorber area ratio are essential to increase the operation time and the average power produced during the night time. Additionally, the overall results show that there is a trade-off between running time and the average power produced during the night time. Average night time power densities as high as 30 W/cm(2) are possible if the system is designed with a small PCM length (10 cm) to operate just a few hours after sun-set, but running times longer than 72 h (3 days) are possible for larger lengths (50 cm) at the expense of a lower average power density of about 14 W/cm(2). In both cases the steady state system efficiency has been predicted to be about 30%. This makes SISTPV systems to be a versatile solution that can be adapted for operation in a broad range of locations with different climate conditions, even being used off-grid and in space applications.
Resumo:
Es bien conocido que las pequeñas imperfecciones existentes en los álabes de un rótor de turbomaquinaria (conocidas como “mistuning”) pueden causar un aumento considerable de la amplitud de vibración de la respuesta forzada y, por el contrario, tienen típicamente un efecto beneficioso en el flameo del rótor. Para entender estos efectos se pueden llevar a cabo estudios numéricos del problema aeroelástico completo. Sin embargo, el cálculo de “mistuning” usando modelos de alta resolución es una tarea difícil de realizar, ya que los modelos necesarios para describir de manera precisa el componente de turbomáquina (por ejemplo rotor) tienen, necesariamente, un número muy elevado de grados de libertad, y, además, es necesario hacer un estudio estadístico para poder explorar apropiadamente las distribuciones posibles de “mistuning”, que tienen una naturaleza aleatoria. Diferentes modelos de orden reducido han sido desarrollados en los últimos años para superar este inconveniente. Uno de estos modelos, llamado “Asymptotic Mistuning Model (AMM)”, se deriva de la formulación completa usando técnicas de perturbaciones que se basan en que el “mistuning” es pequeño. El AMM retiene sólo los modos relevantes para describir el efecto del mistuning, y permite identificar los mecanismos clave involucrados en la amplificación de la respuesta forzada y en la estabilización del flameo. En este trabajo, el AMM se usa para estudiar el efecto del “mistuning” de la estructura y de la amortiguación sobre la amplitud de la respuesta forzada. Los resultados obtenidos son validados usando modelos simplificados del rotor y también otros de alta definición. Además, en el marco del proyecto europeo FP7 "Flutter-Free Turbomachinery Blades (FUTURE)", el AMM se aplica para diseñar distribuciones de “mistuning” intencional: (i) una que anula y (ii) otra que reduce a la mitad la amplitud del flameo de un rotor inestable; y las distribuciones obtenidas se validan experimentalmente. Por último, la capacidad de AMM para predecir el comportamiento de flameo de rotores con “mistuning” se comprueba usando resultados de CFD detallados. Abstract It is well known that the small imperfections of the individual blades in a turbomachinery rotor (known as “mistuning”) can cause a substantial increase of the forced response vibration amplitude, and it also typically results in an improvement of the flutter vibration characteristics of the rotor. The understanding of these phenomena can be attempted just by performing numerical simulations of the complete aeroelastic problem. However, the computation of mistuning cases using high fidelity models is a formidable task, because a detailed model of the whole rotor has to be considered, and a statistical study has to be carried out in order to properly explore the effect of the random mistuning distributions. Many reduced order models have been developed in recent years to overcome this barrier. One of these models, called the Asymptotic Mistuning Model (AMM), is systematically derived from the complete bladed disk formulation using a consistent perturbative procedure that exploits the smallness of mistuning to simplify the problem. The AMM retains only the essential system modes that are involved in the mistuning effect, and it allows to identify the key mechanisms of the amplification of the forced response amplitude and the flutter stabilization. In this work, AMM methodolgy is used to study the effect of structural and damping mistuning on the forced response vibration amplitude. The obtained results are verified using a one degree of freedom model of a rotor, and also high fidelity models of the complete rotor. The AMM is also applied, in the frame of the European FP7 project “Flutter-Free Turbomachinery Blades (FUTURE)”, to design two intentional mistuning patterns: (i) one to complete stabilize an unstable rotor, and (ii) other to approximately reduce by half its flutter amplitude. The designed patterns are validated experimentally. Finally, the ability of AMM to predict the flutter behavior of mistuned rotors is checked against numerical, high fidelity CFD results.
Resumo:
The linearized solution for the two-dimensional flow over an inlet of general form has been derived, assuming incompressible potential flow. With this theory suction forces at sharp inlet lips can be estimated and ideal inlets can be designed.