59 resultados para Instantaneous angular speed analysis
Resumo:
Sight distance is of major importance for road safety either when designing new roads or analysing the alignment of existing roads. It is essential that available sight distance in roads is long enough for emergency stops or overtaking manoeuvres. Also, it is vital for engineers/researchers that the tools used for that analysis are both powerful and intuitive. Based on ArcGIS, the application to be presented not only performs an exhaustive sight distance calculation, but allows an accurate analysis of 3D alignment, using all new tools, from a Digital Elevation Model and vehicle trajectory. The software has been successfully utilised to analyse several two-lane rural roads in Spain. In addition, the software produces thematic maps representing sight distance in which supplementary information about crashes, traffic flow, speed or design consistency could be included, allowing traffic safety studies.
Resumo:
Transportation modes produce many external costs such as congestion, accidents, and environmental impacts (pollution, noise and so on). From the microeconomic theory it is well known that in order to maximize social welfare, transportation modes should internalize the marginal costs they produce. Allocative efficiency is achieved when all transportation modes are priced at their social marginal cost. The objective of this research is to evaluate to what extent different passenger transport modes internalize their social marginal costs. This analysis is important since it affects the competitiveness of the different transport modes for a given OD pair. The case study analyzed is the corridor Madrid-Barcelona in Spain and the different transport modes have been considered (cars, buses, high-speed train and air). The research calculates the marginal social cost per user for each transportation mode, and it compares it with the average fare—allowing for the effect of discriminatory taxes—currently paid by the users. The external costs are calculated according to the guidelines established by the European Union. The gap between the marginal social cost and the price paid by users will provide the extra cost per passenger that each transport mode should have to pay for internalizing the external cost it produces. The research shows that external costs already produced by road and air transport modes are much higher than those produced by rail. However, the results show that road transport already internalizes every external costs it produces because users pay high fuel taxes. In other words, although rail transportation produces lower external costs, road transportation pays more than it should on the basis of the social marginal costs. The results of this work might be of help for Europ ean policy actions to be undertaken in the future.
Resumo:
Esta tesis presenta un novedoso marco de referencia para el análisis y optimización del retardo de codificación y descodificación para vídeo multivista. El objetivo de este marco de referencia es proporcionar una metodología sistemática para el análisis del retardo en codificadores y descodificadores multivista y herramientas útiles en el diseño de codificadores/descodificadores para aplicaciones con requisitos de bajo retardo. El marco de referencia propuesto caracteriza primero los elementos que tienen influencia en el comportamiento del retardo: i) la estructura de predicción multivista, ii) el modelo hardware del codificador/descodificador y iii) los tiempos de proceso de cuadro. En segundo lugar, proporciona algoritmos para el cálculo del retardo de codificación/ descodificación de cualquier estructura arbitraria de predicción multivista. El núcleo de este marco de referencia consiste en una metodología para el análisis del retardo de codificación/descodificación multivista que es independiente de la arquitectura hardware del codificador/descodificador, completada con un conjunto de modelos que particularizan este análisis del retardo con las características de la arquitectura hardware del codificador/descodificador. Entre estos modelos, aquellos basados en teoría de grafos adquieren especial relevancia debido a su capacidad de desacoplar la influencia de los diferentes elementos en el comportamiento del retardo en el codificador/ descodificador, mediante una abstracción de su capacidad de proceso. Para revelar las posibles aplicaciones de este marco de referencia, esta tesis presenta algunos ejemplos de su utilización en problemas de diseño que afectan a codificadores y descodificadores multivista. Este escenario de aplicación cubre los siguientes casos: estrategias para el diseño de estructuras de predicción que tengan en consideración requisitos de retardo además del comportamiento tasa-distorsión; diseño del número de procesadores y análisis de los requisitos de velocidad de proceso en codificadores/ descodificadores multivista dado un retardo objetivo; y el análisis comparativo del comportamiento del retardo en codificadores multivista con diferentes capacidades de proceso e implementaciones hardware. ABSTRACT This thesis presents a novel framework for the analysis and optimization of the encoding and decoding delay for multiview video. The objective of this framework is to provide a systematic methodology for the analysis of the delay in multiview encoders and decoders and useful tools in the design of multiview encoders/decoders for applications with low delay requirements. The proposed framework characterizes firstly the elements that have an influence in the delay performance: i) the multiview prediction structure ii) the hardware model of the encoder/decoder and iii) frame processing times. Secondly, it provides algorithms for the computation of the encoding/decoding delay of any arbitrary multiview prediction structure. The core of this framework consists in a methodology for the analysis of the multiview encoding/decoding delay that is independent of the hardware architecture of the encoder/decoder, which is completed with a set of models that particularize this delay analysis with the characteristics of the hardware architecture of the encoder/decoder. Among these models, the ones based in graph theory acquire special relevance due to their capacity to detach the influence of the different elements in the delay performance of the encoder/decoder, by means of an abstraction of its processing capacity. To reveal possible applications of this framework, this thesis presents some examples of its utilization in design problems that affect multiview encoders and decoders. This application scenario covers the following cases: strategies for the design of prediction structures that take into consideration delay requirements in addition to the rate-distortion performance; design of number of processors and analysis of processor speed requirements in multiview encoders/decoders given a target delay; and comparative analysis of the encoding delay performance of multiview encoders with different processing capabilities and hardware implementations.
Resumo:
Conventional dual-rail precharge logic suffers from difficult implementations of dual-rail structure for obtaining strict compensation between the counterpart rails. As a light-weight and high-speed dual-rail style, balanced cell-based dual-rail logic (BCDL) uses synchronised compound gates with global precharge signal to provide high resistance against differential power or electromagnetic analyses. BCDL can be realised from generic field programmable gate array (FPGA) design flows with constraints. However, routings still exist as concerns because of the deficient flexibility on routing control, which unfavourably results in bias between complementary nets in security-sensitive parts. In this article, based on a routing repair technique, novel verifications towards routing effect are presented. An 8 bit simplified advanced encryption processing (AES)-co-processor is executed that is constructed on block random access memory (RAM)-based BCDL in Xilinx Virtex-5 FPGAs. Since imbalanced routing are major defects in BCDL, the authors can rule out other influences and fairly quantify the security variants. A series of asymptotic correlation electromagnetic (EM) analyses are launched towards a group of circuits with consecutive routing schemes to be able to verify routing impact on side channel analyses. After repairing the non-identical routings, Mutual information analyses are executed to further validate the concrete security increase obtained from identical routing pairs in BCDL.
Resumo:
The aim of the present study was to analyze the visual strategies prior to a throw from 7 metres in elite and amateur handball goalkeepers. To this end we analyzed the visual fixations in number and order of 10 goalkeepers (29.7±5.4 years; 14.7±8.6 years of experience), 3 elite and 7 amateurs, during the life size projection of 14 different throws, made by different players. During each throw the movement of the eyeballs, the dilation of the pupil (pupillometry) and the subject?s blinking were recorded thanks to a technological system which permitted eye tracking with high speed cameras, and the subsequent presentation of the visual data for each action studied. The elite goalkeepers performed a greater number of visual fixations than the amateur goalkeepers, revealing large and significant differences. Equally the priority zones observed were differed, with the amateur goalkeepers fixating more on the thrower?s face, and the elite goalkeepers paying more attention to the area of the arm/ball. It can therefore be inferred that elite goalkeepers have a greater perceptive capacity and also use different visual strategies from the amateur goalkeepers.
Resumo:
Previous research studies and operational trials have shown that using the airborne Required Time of Arrival (RTA) function, an aircraft can individually achieve an assigned time to a metering or merge point accurately. This study goes a step further and investigates the application of RTA to a real sequence of arriving aircraft into Melbourne Australia. Assuming that the actual arrival times were Controlled Time of Arrivals (CTAs) assigned to each aircraft, the study examines if the airborne RTA solution would work. Three scenarios were compared: a baseline scenario being the actual flown trajectories in a two hour time-span into Melbourne, a scenario in which the sequential landing slot times of the baseline scenario were assigned as CTAs and a third scenario in which the landing slots could be freely redistributed to the inbound traffic as CTAs. The research found that pressure on the terminal area would sometimes require aircraft to lose more time than possible through the RTA capability. Using linear holding as an additional measure to absorb extensive delays, up to 500NM (5%) of total track reduction and 1300kg (3%) of total fuel consumption could be saved in the scenario with landing slots freely distributed as CTAs, compared to the baseline scenario. Assigning CTAs in an arrival sequence requires the ground system to have an accurate trajectory predictor to propose additional delay measures (path stretching, linear holding) if necessary. Reducing the achievable time window of the aircraft to add control margin to the RTA function, had a negative impact and increased the amount of intervention other than speed control required to solve the sequence. It was concluded that the RTA capability is not a complete solution but merely a tool to assist in managing the increasing complexity of air traffic.
Resumo:
In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. In addition to recording TOD, the cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also identified for use as the independent variables in the regression analysis. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajectory parame- ters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowledge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace.
Resumo:
The effect of cup anemometer shape parameters, such as the cups’ shape, their size, and their center rotation radius, was experimentally analyzed.This analysis was based on both the calibration constants of the transfer function and the most important harmonic termof the rotor’smovement,which due to the cup anemometer design is the third one.This harmonic analysis represents a new approach to study cup anemometer performances. The results clearly showed a good correlation between the average rotational speed of the anemometer’s rotor and the mentioned third harmonic term of its movement.
Resumo:
The calibration coefficients of several models of cup and propeller anemometers were analysed. The analysis was based on a series of laboratory calibrations between January 2003 and August 2007. Mean and standard deviation values of calibration coefficients from the anemometers studied were included. Two calibration procedures were used and compared. In the first, recommended by the Measuring network of Wind Energy Institutes (MEASNET), 13 measurement points were taken over a wind speed range of 4 to 16 m s−1. In the second procedure, 9 measurement points were taken over a wider speed range of 4 to 23 m s−1. Results indicated no significant differences between the two calibration procedures applied to the same anemometer in terms of measured wind speed and wind turbines' Annual Energy Production (AEP). The influence of the cup anemometers' design on the calibration coefficients was also analysed. The results revealed that the slope of the calibration curve, if based on the rotation frequency and not the anemometer's output frequency, seemed to depend on the cup center rotation radius.
Resumo:
El presente trabajo consiste en la simulación del flujo aerodinámico alrededor de cazoletas de anemómetros. Para ello se ha utilizado un código numérico o software comercial de análisis numérico de fluidos o CFD (Computational Fluid Dynamics). Este trabajo es un aporte más en la línea de investigación acerca del comportamiento de los anemómetros de cazoletas, que viene llevándose a cabo en el Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM). La primera parte de este proyecto consistió en la realización de simulaciones de tipo estacionarias (esto es, con la cazoleta bajo un cierto ángulo de incidencia con respecto al viento pero sin movimiento de rotación). De esta forma se analiza de forma independiente y asilada la cazoleta en cada una de las diferentes posiciones a lo largo de un giro de 360 grados. Así pues, a varios modelos de cazoleta se les fue variando su posición en incrementos de 10 grados desde de la posición angular inicial q = 0º hasta q = 180º, ya que las cazoletas presentan un comportamiento simétrico. La segunda parte de este proyecto se destinó a la realización de otra serie de simulaciones de tipo no estacionarias. Este tipo de simulaciones se realizaron concretamente a sólo un modelo de cazoleta (cónica no porosa). Estas últimas simulaciones, en concreto nueve, se realizaron variando la velocidad angular de la cazoleta respecto a la velocidad del viento.
Resumo:
Wind-flow pattern over embankments involves an overexposure of the rolling stock travelling on them to wind loads. Windbreaks are a common solution for changing the flow characteristic in order to decrease unwanted effects induced by the presence of crosswind. The shelter effectiveness of a set of windbreaks placed over a railway twin-track embankment is experimentally analysed. A set of two-dimensional wind tunnel tests are undertaken and results corresponding to pressure tap measurements over a section of a typical high-speed train are herein presented.The results indicate that even small-height windbreaks provide sheltering effects to the vehicles. Also, eaves located at the windbreak tips seem to improve their sheltering effect.
Resumo:
Este trabajo se centra en el estudio de problemas aeroacústicos en los trenes de alta velocidad. Se han considerado dos escenarios en los que las ondas de presión generadas son críticos para el confort de los pasajeros. Uno es el debido a las ondas de presión que genera el tren cuando entra y sale de un túnel, que a su vez producen saltos de presión de baja frecuencia en el tren (cuando se cruzan con él) y en los alrededores del túnel cuando alcanzan la salida. Se estudia este fenómeno, y se propone un sistema aeroelástico basado en el galope transversal para disminuir la energía de estas ondas, y se analiza la energía extraíble de las ondas utilizando cuerpos con diferentes secciones transversales [Sorribes-Palmer and Sanz-Andres, 2013]. La influencia de la geometría de los portales en la energía radiada hacia el exterior de túnel es analizada experimentalmente, prestando especial atención a las boquillas porosas. Las ondas de presión en el interior del túnel se han analizado mediante el método de las características. Se han realizado ensayos experimentales para estimar la energía reflejada hacia el interior del túnel al alcanzar las ondas de presión el portal de salida del túnel. Se ha estudiado la formación e interacción entre el portal del túnel y la onda de choque generada en los túneles de gran longitud y pequeña fricción. Se propone un método para describir de forma aproximada el ruido radiado al exterior. Por otro lado se ha estudiado el ruido de media y alta frecuencia de origen aerodinámico. Se ha estudiado la influencia del desprendimiento de la capa límite sobre el tren. Se propone una metodología basada en una sección de tren característica para predecir rápidamente el nivel de presión de sonido dentro y fuera del tren para todo el rango de frecuencias. Se han realizado medidas experimentales en vía de los espectros de presión sobre la superficie del tren, y de la transmisibilidad de las uniones entre estructura y revestimiento. Los resultados experimentales se han utilizado en los modelos vibroacústicos. El método de la sección del tren característica es especialmente útil a altas frecuencias cuando todo el tren se puede modelar mediante el ensamblaje de diferentes secciones características utilizando el análisis estadístico de la energía. ABSTRACT This work is focused on the study of aeroacoustic problems in high speed trains. We have considered two scenarios in which the pressure waves generated are critical for passengers comfort. The first one is due to the pressure waves generated by a train entering in a tunnel. These waves generate pressure gauges inside the train (when they find each other) and outside of the tunnel portals. This phenomenon has been studied, and an aeroelastic system based on transverse galloping to reduce the energy of these waves is proposed. The maximum extractable energy by using bodies with different cross-section shapes is analyzed. The influence of the portals geometry in the energy radiated outwards the tunnel is analyzed experimentally, with particular attention to the porous exits. The pressure waves inside the tunnel have been analyzed using the method of characteristics. Experimental tests to estimate the energy reflected into the tunnel when the pressure waves reach the tunnel portal have been performed. We have studied the generation and interaction between the tunnel portal and a shock wave generated in long tunnels with small friction. A method to describe in an approximated way the pressure radiated outside the tunnel is proposed. In the second scenario, middle and high frequency noise generated aerodynamically has been studied, including the influence of the detachment of the boundary layer around the train. A method based on a train section to quickly predict the sound pressure level inside and outside the train has been proposed. Experimental test have been performed on board to evaluate the pressure power spectra on the surface of the train, and the transmissibility of the junctions between the structure and trim. These experimental results have been used in the vibroacoustic models. The low frequency pressure waves generated with the train during the tunnel crossing has been identified in the pressure spectrum. The train characteristic section method is especially useful at high frequencies, when the whole train can be modeled by assembling different sections using the statistical energy analysis. The sound pressure level inside the train is evaluated inside and outside the tunnel.
Resumo:
At present, engineering problems required quite a sophisticated calculation means. However, analytical models still can prove to be a useful tool for engineers and scientists when dealing with complex physical phenomena. The mathematical models developed to analyze three different engineering problems: photovoltaic devices analysis; cup anemometer performance; and high-speed train pressure wave effects in tunnels are described. In all cases, the results are quite accurate when compared to testing measurements.
Resumo:
Large-scale transport infrastructure projects such as high-speed rail (HSR) produce significant effects on the spatial distribution of accessibility. These effects, commonly known as territorial cohesion effects, are receiving increasing attention in the research literature. However, there is little empirical research into the sensitivity of these cohesion results to methodological issues such as the definition of the limits of the study area or the zoning system. In a previous paper (Ortega et al., 2012), we investigated the influence of scale issues, comparing the cohesion results obtained at four different planning levels. This paper makes an additional contribution to our research with the investigation of the influence of zoning issues. We analyze the extent to which changes in the size of the units of analysis influence the measurement of spatial inequalities. The methodology is tested by application to the Galician (north-western) HSR corridor, with a length of nearly 670 km, included in the Spanish PEIT (Strategic Transport and Infrastructure Plan) 2005-2020. We calculated the accessibility indicators for the Galician HSR corridor and assessed their corresponding territorial distribution. We used five alternative zoning systems depending on the method of data representation used (vector or raster), and the level of detail (cartographic accuracy or cell size). Our results suggest that the choice between a vector-based and raster-based system has important implications. The vector system produces a higher mean accessibility value and a more polarized accessibility distribution than raster systems. The increased pixel size of raster-based systems tends to give rise to higher mean accessibility values and a more balanced accessibility distribution. Our findings strongly encourage spatial analysts to acknowledge that the results of their analyses may vary widely according to the definition of the units of analysis.
Resumo:
The objective of this paper is to analyse the factors influencing tourists? choice of a destination and the role of High Speed Rail (HSR) systems in this choice. The methodology proposed consists in analysing two capitals in Europe, i.e. Paris and Madrid where HSR services are important, to investigate the factors influencing holidaymakers in choosing these cities, and the role of HSR in this choice. The main outcome of this paper is to show that several factors influence the choice of a tourist, like the presence of architectural sites, the quality of promotion of the destination itself, the presence of events, and also HSR services. However we found that the HSR system has affected the choice of Paris and Madrid in a different way. Concerning the French case study, HSR is considered a real transport mode alternative among tourists, therefore HSR is chosen to reach Paris as well as for revisiting it. On the other hand, Madrid is chosen by tourists irrespective on the presence of HSR, while HSR is chosen for reaching cities close to Madrid. Data collected from the two surveys have been used for a further quantitative analysis. Models have been specified and calibrated to identify the factors influencing holidaymakers to revisit Paris and Madrid and the role of HSR in this choice has been highlighted.