37 resultados para INTELIGENCIA ARTIFICIAL
Resumo:
Parte de la investigación biomédica actual se encuentra centrada en el análisis de datos heterogéneos. Estos datos pueden tener distinto origen, estructura, y semántica. Gran cantidad de datos de interés para los investigadores se encuentran en bases de datos públicas, que recogen información de distintas fuentes y la ponen a disposición de la comunidad de forma gratuita. Para homogeneizar estas fuentes de datos públicas con otras de origen privado, existen diversas herramientas y técnicas que permiten automatizar los procesos de homogeneización de datos heterogéneos. El Grupo de Informática Biomédica (GIB) [1] de la Universidad Politécnica de Madrid colabora en el proyecto europeo P-medicine [2], cuya finalidad reside en el desarrollo de una infraestructura que facilite la evolución de los procedimientos médicos actuales hacia la medicina personalizada. Una de las tareas enmarcadas en el proyecto P-medicine que tiene asignado el grupo consiste en elaborar herramientas que ayuden a usuarios en el proceso de integración de datos contenidos en fuentes de información heterogéneas. Algunas de estas fuentes de información son bases de datos públicas de ámbito biomédico contenidas en la plataforma NCBI [3] (National Center for Biotechnology Information). Una de las herramientas que el grupo desarrolla para integrar fuentes de datos es Ontology Annotator. En una de sus fases, la labor del usuario consiste en recuperar información de una base de datos pública y seleccionar de forma manual los resultados relevantes. Para automatizar el proceso de búsqueda y selección de resultados relevantes, por un lado existe un gran interés en conseguir generar consultas que guíen hacia resultados lo más precisos y exactos como sea posible, por otro lado, existe un gran interés en extraer información relevante de elevadas cantidades de documentos, lo cual requiere de sistemas que analicen y ponderen los datos que caracterizan a los mismos. En el campo informático de la inteligencia artificial, dentro de la rama de la recuperación de la información, existen diversos estudios acerca de la expansión de consultas a partir de retroalimentación relevante que podrían ser de gran utilidad para dar solución a la cuestión. Estos estudios se centran en técnicas para reformular o expandir la consulta inicial utilizando como realimentación los resultados que en una primera instancia fueron relevantes para el usuario, de forma que el nuevo conjunto de resultados tenga mayor proximidad con los que el usuario realmente desea. El objetivo de este trabajo de fin de grado consiste en el estudio, implementación y experimentación de métodos que automaticen el proceso de extracción de información trascendente de documentos, utilizándola para expandir o reformular consultas. De esta forma se pretende mejorar la precisión y el ranking de los resultados asociados. Dichos métodos serán integrados en la herramienta Ontology Annotator y enfocados a la fuente de datos de PubMed [4].---ABSTRACT---Part of the current biomedical research is focused on the analysis of heterogeneous data. These data may have different origin, structure and semantics. A big quantity of interesting data is contained in public databases which gather information from different sources and make it open and free to be used by the community. In order to homogenize thise sources of public data with others which origin is private, there are some tools and techniques that allow automating the processes of integration heterogeneous data. The biomedical informatics group of the Universidad Politécnica de Madrid cooperates with the European project P-medicine which main purpose is to create an infrastructure and models to facilitate the transition from current medical practice to personalized medicine. One of the tasks of the project that the group is in charge of consists on the development of tools that will help users in the process of integrating data from diverse sources. Some of the sources are biomedical public data bases from the NCBI platform (National Center for Biotechnology Information). One of the tools in which the group is currently working on for the integration of data sources is called the Ontology Annotator. In this tool there is a phase in which the user has to retrieve information from a public data base and select the relevant data contained in it manually. For automating the process of searching and selecting data on the one hand, there is an interest in automatically generating queries that guide towards the more precise results as possible. On the other hand, there is an interest on retrieve relevant information from large quantities of documents. The solution requires systems that analyze and weigh the data allowing the localization of the relevant items. In the computer science field of the artificial intelligence, in the branch of information retrieval there are diverse studies about the query expansion from relevance feedback that could be used to solve the problem. The main purpose of this studies is to obtain a set of results that is the closer as possible to the information that the user really wants to retrieve. In order to reach this purpose different techniques are used to reformulate or expand the initial query using a feedback the results that where relevant for the user, with this method, the new set of results will have more proximity with the ones that the user really desires. The goal of this final dissertation project consists on the study, implementation and experimentation of methods that automate the process of extraction of relevant information from documents using this information to expand queries. This way, the precision and the ranking of the results associated will be improved. These methods will be integrated in the Ontology Annotator tool and will focus on the PubMed data source.
Resumo:
El trabajo está centrado en la construcción de una simulación y en el desarrollo de un control reactivo para un vehículo aéreo no tripulado con fin de participar en la séptima edición de la competición internacional IARC. Para cumplir los objetivos de la competición se van a estudiar técnicas existentes de inteligencia artificial aplicadas al control de vehículos aéreos no tripulados, así como las técnicas para la elaboración de un modelo de simulación realista sobre el que realizar las distintas pruebas. Por último, se explica el trabajo realizado para crear un controlador reactivo que satisface las reglas de la competición y permite al vehículo aéreo no tripulado operar de forma autónoma en el ambiente de la simulación. Para validar el comportamiento, se realizan casos de prueba y un estudio de los resultados.---ABSTRACT---This report is focused on the construction of a simulation and the development of a reactive control for an unmanned aerial vehicle in order to participate in the seventh edition of the international competition IARC. Artificial intelligence techniques applied to the control of unmanned aerial vehicles are going to be studied to meet the objectives of the competition, as well as techniques for developing a realistic simulation model on which to perform the different tests. Finally, the last part of the report explains the work accomplished to create a reactive controller that meets the rules of the competition and allows the unmanned aerial vehicle to operate autonomously in the simulation environment. Test cases and a study of the results is performed to validate the behavior.
Resumo:
Los medios sociales han revolucionado la manera en la que los consumidores se relacionan entre sí y con las marcas. Las opiniones publicadas en dichos medios tienen un poder de influencia en las decisiones de compra tan importante como las campañas de publicidad. En consecuencia, los profesionales del marketing cada vez dedican mayores esfuerzos e inversión a la obtención de indicadores que permitan medir el estado de salud de las marcas a partir de los contenidos digitales generados por sus consumidores. Dada la naturaleza no estructurada de los contenidos publicados en los medios sociales, la tecnología usada para procesar dichos contenidos ha menudo implementa técnicas de Inteligencia Artificial, tales como algoritmos de procesamiento de lenguaje natural, aprendizaje automático y análisis semántico. Esta tesis, contribuye al estado de la cuestión, con un modelo que permite estructurar e integrar la información publicada en medios sociales, y una serie de técnicas cuyos objetivos son la identificación de consumidores, así como la segmentación psicográfica y sociodemográfica de los mismos. La técnica de identificación de consumidores se basa en la huella digital de los dispositivos que utilizan para navegar por la Web y es tolerante a los cambios que se producen con frecuencia en dicha huella digital. Las técnicas de segmentación psicográfica descritas obtienen la posición en el embudo de compra de los consumidores y permiten clasificar las opiniones en función de una serie de atributos de marketing. Finalmente, las técnicas de segmentación sociodemográfica permiten obtener el lugar de residencia y el género de los consumidores. ABSTRACT Social media has revolutionised the way in which consumers relate to each other and with brands. The opinions published in social media have a power of influencing purchase decisions as important as advertising campaigns. Consequently, marketers are increasing efforts and investments for obtaining indicators to measure brand health from the digital content generated by consumers. Given the unstructured nature of social media contents, the technology used for processing such contents often implements Artificial Intelligence techniques, such as natural language processing, machine learning and semantic analysis algorithms. This thesis contributes to the State of the Art, with a model for structuring and integrating the information posted on social media, and a number of techniques whose objectives are the identification of consumers, as well as their socio-demographic and psychographic segmentation. The consumer identification technique is based on the fingerprint of the devices they use to surf the Web and is tolerant to the changes that occur frequently in such fingerprint. The psychographic profiling techniques described infer the position of consumer in the purchase funnel, and allow to classify the opinions based on a series of marketing attributes. Finally, the socio-demographic profiling techniques allow to obtain the residence and gender of consumers.
Resumo:
El incremento de la esperanza de vida en los países desarrollados (más de 80 años en 2013), está suponiendo un crecimiento considerable en la incidencia y prevalencia de enfermedades discapacitantes, que si bien pueden aparecer a edades tempranas, son más frecuentes en la tercera edad, o en sus inmediaciones. Enfermedades neuro-degenerativas que suponen un gran hándicap funcional, pues algunas de ellas están asociadas a movimientos involuntarios de determinadas partes del cuerpo, sobre todo de las extremidades. Tareas cotidianas como la ingesta de alimento, vestirse, escribir, interactuar con el ordenador, etc… pueden llegar a ser grandes retos para las personas que las padecen. El diagnóstico precoz y certero resulta fundamental para la prescripción de la terapia o tratamiento óptimo. Teniendo en cuenta incluso que en muchos casos, por desgracia la mayoría, sólo se puede actuar para mitigar los síntomas, y no para sanarlos, al menos de momento. Aun así, acertar de manera temprana en el diagnóstico supone proporcionar al enfermo una mayor calidad de vida durante mucho más tiempo, por lo cual el esfuerzo merece, y mucho, la pena. Los enfermos de Párkinson y de temblor esencial suponen un porcentaje importante de la casuística clínica en los trastornos del movimiento que impiden llevar una vida normal, que producen una discapacidad física y una no menos importante exclusión social. Las vías de tratamiento son dispares de ahí que sea crítico acertar en el diagnóstico lo antes posible. Hasta la actualidad, los profesionales y expertos en medicina, utilizan unas escalas cualitativas para diferenciar la patología y su grado de afectación. Dichas escalas también se utilizan para efectuar un seguimiento clínico y registrar la historia del paciente. En esta tesis se propone una serie de métodos de análisis y de identificación/clasificación de los tipos de temblor asociados a la enfermedad de Párkinson y el temblor esencial. Empleando técnicas de inteligencia artificial basadas en clasificadores inteligentes: redes neuronales (MLP y LVQ) y máquinas de soporte vectorial (SVM), a partir del desarrollo e implantación de un sistema para la medida y análisis objetiva del temblor: DIMETER. Dicho sistema además de ser una herramienta eficaz para la ayuda al diagnóstico, presenta también las capacidades necesarias para proporcionar un seguimiento riguroso y fiable de la evolución de cada paciente. ABSTRACT The increase in life expectancy in developed countries in more than 80 years (data belongs to 2013), is assuming considerable growth in the incidence and prevalence of disabling diseases. Although they may appear at an early age, they are more common in the elderly ages or in its vicinity. Nuero-degenerative diseases that are a major functional handicap, as some of them are associated with involuntary movements of certain body parts, especially of the limbs. Everyday tasks such as food intake, dressing, writing, interact with the computer, etc ... can become large debris for people who suffer. Early and accurate diagnosis is crucial for prescribing optimal therapy or treatment. Even taking into account that in many cases, unfortunately the majority, can only act to mitigate the symptoms, not to cure them, at least for now. Nevertheless, early diagnosis may provide the patient a better quality of life for much longer time, so the effort is worth, and much, grief. Sufferers of Parkinson's and essential tremor represent a significant percentage of clinical casuistry in movement disorders that prevent a normal life, leading to physical disability and not least social exclusion. There are various treatment methods, which makes it necessary the immediate diagnosis. Up to date, professionals and medical experts, use a qualitative scale to differentiate the disease and degree of involvement. Therefore, those scales are used in clinical follow-up. In this thesis, several methods of analysis and identification / classification of types of tremor associated with Parkinson's disease and essential tremor are proposed. Using artificial intelligence techniques based on intelligent classification: neural networks (MLP and LVQ) and support vector machines (SVM), starting from the development and implementation of a system for measuring and objective analysis of the tremor: DIMETER. This system besides being an effective tool to aid diagnosis, it also has the necessary capabilities to provide a rigorous and reliable monitoring of the evolution of each patient.
Resumo:
En esta tesis se estudia la representación, modelado y comparación de colecciones mediante el uso de ontologías en el ámbito de la Web Semántica. Las colecciones, entendidas como agrupaciones de objetos o elementos con entidad propia, son construcciones que aparecen frecuentemente en prácticamente todos los dominios del mundo real, y por tanto, es imprescindible disponer de conceptualizaciones de estas estructuras abstractas y de representaciones de estas conceptualizaciones en los sistemas informáticos, que definan adecuadamente su semántica. Mientras que en muchos ámbitos de la Informática y la Inteligencia Artificial, como por ejemplo la programación, las bases de datos o la recuperación de información, las colecciones han sido ampliamente estudiadas y se han desarrollado representaciones que responden a multitud de conceptualizaciones, en el ámbito de la Web Semántica, sin embargo, su estudio ha sido bastante limitado. De hecho hasta la fecha existen pocas propuestas de representación de colecciones mediante ontologías, y las que hay sólo cubren algunos tipos de colecciones y presentan importantes limitaciones. Esto impide la representación adecuada de colecciones y dificulta otras tareas comunes como la comparación de colecciones, algo crítico en operaciones habituales como las búsquedas semánticas o el enlazado de datos en la Web Semántica. Para solventar este problema esta tesis hace una propuesta de modelización de colecciones basada en una nueva clasificación de colecciones de acuerdo a sus características estructurales (homogeneidad, unicidad, orden y cardinalidad). Esta clasificación permite definir una taxonomía con hasta 16 tipos de colecciones distintas. Entre otras ventajas, esta nueva clasificación permite aprovechar la semántica de las propiedades estructurales de cada tipo de colección para realizar comparaciones utilizando las funciones de similitud y disimilitud más apropiadas. De este modo, la tesis desarrolla además un nuevo catálogo de funciones de similitud para las distintas colecciones, donde se han recogido las funciones de (di)similitud más conocidas y también algunas nuevas. Esta propuesta se ha implementado mediante dos ontologías paralelas, la ontología E-Collections, que representa los distintos tipos de colecciones de la taxonomía y su axiomática, y la ontología SIMEON (Similarity Measures Ontology) que representa los tipos de funciones de (di)similitud para cada tipo de colección. Gracias a estas ontologías, para comparar dos colecciones, una vez representadas como instancias de la clase más apropiada de la ontología E-Collections, automáticamente se sabe qué funciones de (di)similitud de la ontología SIMEON pueden utilizarse para su comparación. Abstract This thesis studies the representation, modeling and comparison of collections in the Semantic Web using ontologies. Collections, understood as groups of objects or elements with their own identities, are constructions that appear frequently in almost all areas of the real world. Therefore, it is essential to have conceptualizations of these abstract structures and representations of these conceptualizations in computer systems, that define their semantic properly. While in many areas of Computer Science and Artificial Intelligence, such as Programming, Databases or Information Retrieval, the collections have been extensively studied and there are representations that match many conceptualizations, in the field Semantic Web, however, their study has been quite limited. In fact, there are few representations of collections using ontologies so far, and they only cover some types of collections and have important limitations. This hinders a proper representation of collections and other common tasks like comparing collections, something critical in usual operations such as semantic search or linking data on the Semantic Web. To solve this problem this thesis makes a proposal for modelling collections based on a new classification of collections according to their structural characteristics (homogeneity, uniqueness, order and cardinality). This classification allows to define a taxonomy with up to 16 different types of collections. Among other advantages, this new classification can leverage the semantics of the structural properties of each type of collection to make comparisons using the most appropriate (dis)similarity functions. Thus, the thesis also develops a new catalog of similarity functions for the different types of collections. This catalog contains the most common (dis)similarity functions as well as new ones. This proposal is implemented through two parallel ontologies, the E-Collections ontology that represents the different types of collections in the taxonomy and their axiomatic, and the SIMEON ontology (Similarity Measures Ontology) that represents the types of (dis)similarity functions for each type of collection. Thanks to these ontologies, to compare two collections, once represented as instances of the appropriate class of E-Collections ontology, we can know automatically which (dis)similarity functions of the SIMEON ontology are suitable for the comparison. Finally, the feasibility and usefulness of this modeling and comparison of collections proposal is proved in the field of oenology, applying both E-Collections and SIMEON ontologies to the representation and comparison of wines with the E-Baco ontology.
Resumo:
Discurso pronunciado por D. Rafael Portaencasa con motivo de la Festividad de Santo Tomás de Aquino e investidura de Doctores "Honoris Causa" de los profesores Lacombe (científico de renombre en el campo de Minas), MacCarthy (destacado investigador en el campo de la inteligencia artificial) y Carpentier.
Resumo:
Esta tesis presenta el diseño y la aplicación de una metodología que permite la determinación de los parámetros para la planificación de nodos e infraestructuras logísticas en un territorio, considerando además el impacto de estas en los diferentes componentes territoriales, así como en el desarrollo poblacional, el desarrollo económico y el medio ambiente, presentando así un avance en la planificación integral del territorio. La Metodología propuesta está basada en Minería de Datos, que permite el descubrimiento de patrones detrás de grandes volúmenes de datos previamente procesados. Las características propias de los datos sobre el territorio y los componentes que lo conforman hacen de los estudios territoriales un campo ideal para la aplicación de algunas de las técnicas de Minería de Datos, tales como los ´arboles decisión y las redes bayesianas. Los árboles de decisión permiten representar y categorizar de forma esquemática una serie de variables de predicción que ayudan al análisis de una variable objetivo. Las redes bayesianas representan en un grafo acíclico dirigido, un modelo probabilístico de variables distribuidas en padres e hijos, y la inferencia estadística que permite determinar la probabilidad de certeza de una hipótesis planteada, es decir, permiten construir modelos de probabilidad conjunta que presentan de manera gráfica las dependencias relevantes en un conjunto de datos. Al igual que con los árboles de decisión, la división del territorio en diferentes unidades administrativas hace de las redes bayesianas una herramienta potencial para definir las características físicas de alguna tipología especifica de infraestructura logística tomando en consideración las características territoriales, poblacionales y económicas del área donde se plantea su desarrollo y las posibles sinergias que se puedan presentar sobre otros nodos e infraestructuras logísticas. El caso de estudio seleccionado para la aplicación de la metodología ha sido la República de Panamá, considerando que este país presenta algunas características singulares, entra las que destacan su alta concentración de población en la Ciudad de Panamá; que a su vez a concentrado la actividad económica del país; su alto porcentaje de zonas protegidas, lo que ha limitado la vertebración del territorio; y el Canal de Panamá y los puertos de contenedores adyacentes al mismo. La metodología se divide en tres fases principales: Fase 1: Determinación del escenario de trabajo 1. Revisión del estado del arte. 2. Determinación y obtención de las variables de estudio. Fase 2: Desarrollo del modelo de inteligencia artificial 3. Construcción de los ´arboles de decisión. 4. Construcción de las redes bayesianas. Fase 3: Conclusiones 5. Determinación de las conclusiones. Con relación al modelo de planificación aplicado al caso de estudio, una vez aplicada la metodología, se estableció un modelo compuesto por 47 variables que definen la planificación logística de Panamá, el resto de variables se definen a partir de estas, es decir, conocidas estas, el resto se definen a través de ellas. Este modelo de planificación establecido a través de la red bayesiana considera los aspectos de una planificación sostenible: económica, social y ambiental; que crean sinergia con la planificación de nodos e infraestructuras logísticas. The thesis presents the design and application of a methodology that allows the determination of parameters for the planning of nodes and logistics infrastructure in a territory, besides considering the impact of these different territorial components, as well as the population growth, economic and environmental development. The proposed methodology is based on Data Mining, which allows the discovery of patterns behind large volumes of previously processed data. The own characteristics of the territorial data makes of territorial studies an ideal field of knowledge for the implementation of some of the Data Mining techniques, such as Decision Trees and Bayesian Networks. Decision trees categorize schematically a series of predictor variables of an analyzed objective variable. Bayesian Networks represent a directed acyclic graph, a probabilistic model of variables divided in fathers and sons, and statistical inference that allow determine the probability of certainty in a hypothesis. The case of study for the application of the methodology is the Republic of Panama. This country has some unique features: a high population density in the Panama City, a concentration of economic activity, a high percentage of protected areas, and the Panama Canal. The methodology is divided into three main phases: Phase 1: definition of the work stage. 1. Review of the State of the art. 2. Determination of the variables. Phase 2: Development of artificial intelligence model 3. Construction of decision trees. 4. Construction of Bayesian Networks. Phase 3: conclusions 5. Determination of the conclusions. The application of the methodology to the case study established a model composed of 47 variables that define the logistics planning for Panama. This model of planning established through the Bayesian network considers aspects of sustainable planning and simulates the synergies between the nodes and logistical infrastructure planning.