69 resultados para INFORMATION NETWORKS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telecommunications networks have been always expanding and thanks to it, new services have appeared. The old mechanisms for carrying packets have become obsolete due to the new service requirements, which have begun working in real time. Real time traffic requires strict service guarantees. When this traffic is sent through the network, enough resources must be given in order to avoid delays and information losses. When browsing through the Internet and requesting web pages, data must be sent from a server to the user. If during the transmission there is any packet drop, the packet is sent again. For the end user, it does not matter if the webpage loads in one or two seconds more. But if the user is maintaining a conversation with a VoIP program, such as Skype, one or two seconds of delay in the conversation may be catastrophic, and none of them can understand the other. In order to provide support for this new services, the networks have to evolve. For this purpose MPLS and QoS were developed. MPLS is a packet carrying mechanism used in high performance telecommunication networks which directs and carries data using pre-established paths. Now, packets are forwarded on the basis of labels, making this process faster than routing the packets with the IP addresses. MPLS also supports Traffic Engineering (TE). This refers to the process of selecting the best paths for data traffic in order to balance the traffic load between the different links. In a network with multiple paths, routing algorithms calculate the shortest one, and most of the times all traffic is directed through it, causing overload and packet drops, without distributing the packets in the other paths that the network offers and do not have any traffic. But this is not enough in order to provide the real time traffic the guarantees it needs. In fact, those mechanisms improve the network, but they do not make changes in how the traffic is treated. That is why Quality of Service (QoS) was developed. Quality of service is the ability to provide different priority to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow. Traffic is distributed into different classes and each of them is treated differently, according to its Service Level Agreement (SLA). Traffic with the highest priority will have the preference over lower classes, but this does not mean it will monopolize all the resources. In order to achieve this goal, a set policies are defined to control and alter how the traffic flows. Possibilities are endless, and it depends in how the network must be structured. By using those mechanisms it is possible to provide the necessary guarantees to the real-time traffic, distributing it between categories inside the network and offering the best service for both real time data and non real time data. Las Redes de Telecomunicaciones siempre han estado en expansión y han propiciado la aparición de nuevos servicios. Los viejos mecanismos para transportar paquetes se han quedado obsoletos debido a las exigencias de los nuevos servicios, que han comenzado a operar en tiempo real. El tráfico en tiempo real requiere de unas estrictas garantías de servicio. Cuando este tráfico se envía a través de la red, necesita disponer de suficientes recursos para evitar retrasos y pérdidas de información. Cuando se navega por la red y se solicitan páginas web, los datos viajan desde un servidor hasta el usuario. Si durante la transmisión se pierde algún paquete, éste se vuelve a mandar de nuevo. Para el usuario final, no importa si la página tarda uno o dos segundos más en cargar. Ahora bien, si el usuario está manteniendo una conversación usando algún programa de VoIP (como por ejemplo Skype) uno o dos segundos de retardo en la conversación podrían ser catastróficos, y ninguno de los interlocutores sería capaz de entender al otro. Para poder dar soporte a estos nuevos servicios, las redes deben evolucionar. Para este propósito se han concebido MPLS y QoS MPLS es un mecanismo de transporte de paquetes que se usa en redes de telecomunicaciones de alto rendimiento que dirige y transporta los datos de acuerdo a caminos preestablecidos. Ahora los paquetes se encaminan en función de unas etiquetas, lo cual hace que sea mucho más rápido que encaminar los paquetes usando las direcciones IP. MPLS también soporta Ingeniería de Tráfico (TE). Consiste en seleccionar los mejores caminos para el tráfico de datos con el objetivo de balancear la carga entre los diferentes enlaces. En una red con múltiples caminos, los algoritmos de enrutamiento actuales calculan el camino más corto, y muchas veces el tráfico se dirige sólo por éste, saturando el canal, mientras que otras rutas se quedan completamente desocupadas. Ahora bien, esto no es suficiente para ofrecer al tráfico en tiempo real las garantías que necesita. De hecho, estos mecanismos mejoran la red, pero no realizan cambios a la hora de tratar el tráfico. Por esto es por lo que se ha desarrollado el concepto de Calidad de Servicio (QoS). La calidad de servicio es la capacidad para ofrecer diferentes prioridades a las diferentes aplicaciones, usuarios o flujos de datos, y para garantizar un cierto nivel de rendimiento en un flujo de datos. El tráfico se distribuye en diferentes clases y cada una de ellas se trata de forma diferente, de acuerdo a las especificaciones que se indiquen en su Contrato de Tráfico (SLA). EL tráfico con mayor prioridad tendrá preferencia sobre el resto, pero esto no significa que acapare la totalidad de los recursos. Para poder alcanzar estos objetivos se definen una serie de políticas para controlar y alterar el comportamiento del tráfico. Las posibilidades son inmensas dependiendo de cómo se quiera estructurar la red. Usando estos mecanismos se pueden proporcionar las garantías necesarias al tráfico en tiempo real, distribuyéndolo en categorías dentro de la red y ofreciendo el mejor servicio posible tanto a los datos en tiempo real como a los que no lo son.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis doctoral está enmarcada en dos diferentes pero complementarias áreas de investigación: las redes de Publicación/Subscripción y los servicios móviles distribuidos. Con el paso de los años las redes de Publicación/Subscripción han ido ofreciendo el soporte de comunicaciones desacopladas y ligeras que a su vez, han mejorado la distribución de la información en muchos escenarios de aplicación como lo son la ejecución de servicios distribuidos en entornos fijos. Los servicios móviles distribuidos han de ser desplegados en ambientes inalámbricos en donde los dispositivos móviles deben confiar en las mismas características que las redes de Publicación/Subscripción han estado ofreciendo a sus contrapartes fijos. En este contexto, una de las líneas de investigación pendientes consiste en cómo tomar ventaja de estas características, y cómo avanzar hacia nuevas soluciones no existentes con el fin de mejorar la integración entre los dispositivos fijos y móviles, y la ejecución de los servicios móviles distribuidos. En esta tesis doctoral se pretende avanzar en los mecanismos de integración y coordinación de los servicios móviles distribuidos en el contexto de las redes de Publicación/Subscripción. Los objetivos específicos de esta disertación están enfocados en lograr la integración de los sistemas de Publicación/Suscripción fijos y móviles, y la pro-visión de una versión de red de Publicación/Subscripción específica y uniforme que cuente con mecanismos de coordinación que mejoren la ejecución de los servicios móviles distribuidos. Los resultados de esta tesis doctoral están enmarcados en una versión específica de una red de Publicación/Subscripción que integra brokers fijos y móviles, y permite una coordinación totalmente desacoplada y mejorada entre dispositivos móviles que ejecutan fragmentos de servicios. Las contribuciones específicas son las siguientes: una nueva arquitectura de broker móvil que he llamado Rendezvous Mobile broker, un modelo abstracto de servicios móviles distribuidos coordinados sobre una red de Publicación/Subscripción, mejoras en los mecanismos de enrutamiento epidémicos para diseminar eventos de control producidos por fragmentos de servicios, una solución para soportar servicios altamente fragmentados y geográficamente dispersos, y finalmente una solución de interconexión entre dos dominios de red basados en Publicación/Subscripción: una red basada en el protocolo PubSubHubbub y otro en una red basada en el Publish/Subscribe Internet Routing Paradigm (PSIRP). Los experimentos llevados a cabo confirman que la versión específica de red de Pu-blicación/Subscripción propuesta incrementa el rendimiento de la red en términos de tiempo de espera entre nodos finales, permite una coordinación de los servicios móviles distribuidos más resistente a interrupciones y un mejor uso de los recursos de red, y finalmente logra exitosamente, con variaciones mínimas en el rendimiento de las comunicaciones, la interconexión entre estos dominios de Publicación/Subscripción diferentes. ABSTRACT This dissertation is made up of two different but complementary research areas: Publish/Subscribe networks and mobile distributed services. Over the years, Publish/Subscribe networks have been offering the lightweight and decoupled communication characteristics to improve the information distribution in several application domains such as the execution of distributed services. Mobile distributed services are set to be deployed in wireless environments where mobile devices must rely on the same features Publish/Subscribe networks can offer; so one of the pending research directions consists of how to take advantage of these features and further advance to-wards new un-existing solutions that enhance the integration between mobile and fixed systems and the execution of mobile distributed services. This dissertation seeks to advance the integration and coordination mechanisms of mobile distributed services in the context of Publish/Subscribe networks. The specific objectives aim to enable the integration of mobile and fixed Publish/Subscribe systems and provide a uniform and specific version of a Publish/Subscribe network with new coordination mechanisms that improve the execution of mobile distributed services. The results of this dissertation are enclosed in one specific version of a Publish/Subscribe network that integrates mobile and fixed brokers and coordinates the execution of mobile distributed services. These specific contributions are: a new architecture of a mobile broker I called Rendezvous Mobile Broker, an abstract model for coordinating mobile distributed services executions using a Publish/Subscribe net-work, new gossip routing solutions to disseminate events of services, mechanisms to support highly partitioned and geographically dispersed services and finally, an inter-networking solution between two Publish/Subscribe domains: a PubSubHubbub-based network and the Publish/Subscribe Internet Routing Paradigm (PSIRP)-based network. The experimental efforts confirm that the specific version of the Publish/Subscribe proposed in this dissertation improves the performance of the overall network in terms of end-to-end delay, enables a more resilience execution of mobile distributed services, a better usage of the existing network resources, and finally successfully achieves, with minor variations in the network performance, the internetworking between two different Publish/Subscribe domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution to global energy consumption of the information and communications technology (ICT) sector has increased considerably in the last decade, along with its growing relevance to the overall economy. This trend will continue due to the seemingly ever greater use of these technologies, with broadband data traffic generated by the usage of telecommunication networks as a primary component. In fact, in response to user demand, the telecommunications industry is initiating the deployment of next generation networks (NGNs). However, energy consumption is mostly absent from the debate on these deployments, in spite of the potential impact on both expenses and sustainability. In addition, consumers are unaware of the energy impact of their choices in ultra-broadband services. This paper focuses on forecasting energy consumption in the access part of NGNs by modelling the combined effect of the deployment of two different ultra-broadband technologies (FTTH-GPON and LTE), the evolution of traffic per user, and the energy consumption in each of the networks and user devices. Conclusions are presented on the levels of energy consumption, their cost and the impact of different network design parameters. The effect of technological developments, techno-economic and policy decisions on energy consumption is highlighted. On the consumer side, practical figures and comparisons across technologies are provided. Although the paper focuses on Spain, the analysis can be extended to similar countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in CPU power and screen quality of todays smartphones as well as the availability of high bandwidth wireless networks has enabled high quality mobile videoconfer- encing never seen before. However, adapting to the variety of devices and network conditions that come as a result is still not a trivial issue. In this paper, we present a multiple participant videoconferencing service that adapts to different kind of devices and access networks while providing an stable communication. By combining network quality detection and the use of a multipoint control unit for video mixing and transcoding, desktop, tablet and mobile clients can participate seamlessly. We also describe the cost in terms of bandwidth and CPU usage of this approach in a variety of scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambient Assisted Living (AAL) services are emerging as context-awareness solutions to support elderly people?s autonomy. The context-aware paradigm makes applications more user-adaptive. In this way, context and user models expressed in ontologies are employed by applications to describe user and environment characteristics. The rapid advance of technology allows creating context server to relieve applications of context reasoning techniques. Specifically, the Next Generation Networks (NGN) provides by means of the presence service a framework to manage the current user's state as well as the user's profile information extracted from Internet and mobile context. This paper propose a user modeling ontology for AAL services which can be deployed in a NGN environment with the aim at adapting their functionalities to the elderly's context information and state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract—In this paper we explore how recent technologies can improve the security of optical networks. In particular, we study how to use quantum key distribution(QKD) in common optical network infrastructures and propose a method to overcome its distance limitations. QKD is the first technology offering information theoretic secretkey distribution that relies only on the fundamental principles of quantum physics. Point-to-point QKDdevices have reached a mature industrial state; however, these devices are severely limited in distance, since signals at the quantum level (e.g., single photons) are highly affected by the losses in the communication channel and intermediate devices. To overcome this limitation, intermediate nodes (i.e., repeaters) are used. Both quantum-regime and trusted, classical repeaters have been proposed in the QKD literature, but only the latter can be implemented in practice. As a novelty, we propose here a new QKD network model based on the use of not fully trusted intermediate nodes, referred to as weakly trusted repeaters. This approach forces the attacker to simultaneously break several paths to get access to the exchanged key, thus improving significantly the security of the network. We formalize the model using network codes and provide real scenarios that allow users to exchange secure keys over metropolitan optical networks using only passive components. Moreover, the theoretical framework allows one to extend these scenarios not only to accommodate more complex trust constraints, but also to consider robustness and resiliency constraints on the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The movement of water through the landscape can be investigated at different scales. This study dealt with the interrelation between bedrock lithology and the geometry of the overlying drainage systems. Parameters of fractal analysis, such as fractal dimension and lacunarity, were used to measure and quantify this relationship. The interrelation between bedrock lithology and the geometry of the drainage systems has been widely studied in the last decades. The quantification of this linkage has not yet been clearly established. Several studies have selected river basins or regularly shaped areas as study units, assuming them to be lithologically homogeneous. This study considered irregular distributions of rock types, establishing areas of the soil map (1:25,000) with the same lithologic information as study units. The tectonic stability and the low climatic variability of the study region allowed effective investigation of the lithologic controls on the drainage networks developed on the plutonic rocks, the metamorphic rocks, and the sedimentary materials existing in the study area. To exclude the effect of multiple in- and outflows in the lithologically homogeneous units, we focused this study on the first-order streams of the drainage networks. The geometry of the hydrologic features was quantified through traditional metrics of fluvial geomorphology and scaling parameters of fractal analysis, such as the fractal dimension, the reference density, and the lacunarity. The results demonstrate the scale invariance of both the drainage networks and the set of first-order streams at the study scale and a relationship between scaling in the lithology and the drainage network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of the many state-of-the-art methods for cooperative localization in wireless sensor networks (WSN), only very few adapt well to mobile networks. The main problems of the well-known algorithms, based on nonparametric belief propagation (NBP), are the high communication cost and inefficient sampling techniques. Moreover, they either do not use smoothing or just apply it o ine. Therefore, in this article, we propose more flexible and effcient variants of NBP for cooperative localization in mobile networks. In particular, we provide: i) an optional 1-lag smoothing done almost in real-time, ii) a novel low-cost communication protocol based on package approximation and censoring, iii) higher robustness of the standard mixture importance sampling (MIS) technique, and iv) a higher amount of information in the importance densities by using the population Monte Carlo (PMC) approach, or an auxiliary variable. Through extensive simulations, we confirmed that all the proposed techniques outperform the standard NBP method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n this paper we propose the use of Networks of Bio-inspired Processors (NBP) to model some biological phenomena within a computational framework. In particular, we propose the use of an extension of NBP named Network Evolutionary Processors Transducers to simulate chemical transformations of substances. Within a biological process, chemical transformations of substances are basic operations in the change of the state of the cell. Previously, it has been proved that NBP are computationally complete, that is, they are able to solve NP complete problems in linear time, using massively parallel computations. In addition, we propose a multilayer architecture that will allow us to design models of biological processes related to cellular communication as well as their implications in the metabolic pathways. Subsequently, these models can be applied not only to biological-cellular instances but, possibly, also to configure instances of interactive processes in many other fields like population interactions, ecological trophic networks, in dustrial ecosystems, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seepage flow measurement is an important behavior indicator when providing information about dam performance. The main objective of this study is to analyze seepage by means of an artificial neural network model. The model is trained and validated with data measured at a case study. The dam behavior towards different water level changes is reproduced by the model and a hysteresis phenomenon detected and studied. Artificial neural network models are shown to be a powerful tool for predicting and understanding seepage phenomenon.