52 resultados para Hybrid mobile applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed parallel execution systems speed up applications by splitting tasks into processes whose execution is assigned to different receiving nodes in a high-bandwidth network. On the distributing side, a fundamental problem is grouping and scheduling such tasks such that each one involves sufñcient computational cost when compared to the task creation and communication costs and other such practical overheads. On the receiving side, an important issue is to have some assurance of the correctness and characteristics of the code received and also of the kind of load the particular task is going to pose, which can be specified by means of certificates. In this paper we present in a tutorial way a number of general solutions to these problems, and illustrate them through their implementation in the Ciao multi-paradigm language and program development environment. This system includes facilities for parallel and distributed execution, an assertion language for specifying complex programs properties (including safety and resource-related properties), and compile-time and run-time tools for performing automated parallelization and resource control, as well as certification of programs with resource consumption assurances and efñcient checking of such certificates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La mayor parte de los entornos diseñados por el hombre presentan características geométricas específicas. En ellos es frecuente encontrar formas poligonales, rectangulares, circulares . . . con una serie de relaciones típicas entre distintos elementos del entorno. Introducir este tipo de conocimiento en el proceso de construcción de mapas de un robot móvil puede mejorar notablemente la calidad y la precisión de los mapas resultantes. También puede hacerlos más útiles de cara a un razonamiento de más alto nivel. Cuando la construcción de mapas se formula en un marco probabilístico Bayesiano, una especificación completa del problema requiere considerar cierta información a priori sobre el tipo de entorno. El conocimiento previo puede aplicarse de varias maneras, en esta tesis se presentan dos marcos diferentes: uno basado en el uso de primitivas geométricas y otro que emplea un método de representación cercano al espacio de las medidas brutas. Un enfoque basado en características geométricas supone implícitamente imponer un cierto modelo a priori para el entorno. En este sentido, el desarrollo de una solución al problema SLAM mediante la optimización de un grafo de características geométricas constituye un primer paso hacia nuevos métodos de construcción de mapas en entornos estructurados. En el primero de los dos marcos propuestos, el sistema deduce la información a priori a aplicar en cada caso en base a una extensa colección de posibles modelos geométricos genéricos, siguiendo un método de Maximización de la Esperanza para hallar la estructura y el mapa más probables. La representación de la estructura del entorno se basa en un enfoque jerárquico, con diferentes niveles de abstracción para los distintos elementos geométricos que puedan describirlo. Se llevaron a cabo diversos experimentos para mostrar la versatilidad y el buen funcionamiento del método propuesto. En el segundo marco, el usuario puede definir diferentes modelos de estructura para el entorno mediante grupos de restricciones y energías locales entre puntos vecinos de un conjunto de datos del mismo. El grupo de restricciones que se aplica a cada grupo de puntos depende de la topología, que es inferida por el propio sistema. De este modo, se pueden incorporar nuevos modelos genéricos de estructura para el entorno con gran flexibilidad y facilidad. Se realizaron distintos experimentos para demostrar la flexibilidad y los buenos resultados del enfoque propuesto. Abstract Most human designed environments present specific geometrical characteristics. In them, it is easy to find polygonal, rectangular and circular shapes, with a series of typical relations between different elements of the environment. Introducing this kind of knowledge in the mapping process of mobile robots can notably improve the quality and accuracy of the resulting maps. It can also make them more suitable for higher level reasoning applications. When mapping is formulated in a Bayesian probabilistic framework, a complete specification of the problem requires considering a prior for the environment. The prior over the structure of the environment can be applied in several ways; this dissertation presents two different frameworks, one using a feature based approach and another one employing a dense representation close to the measurements space. A feature based approach implicitly imposes a prior for the environment. In this sense, feature based graph SLAM was a first step towards a new mapping solution for structured scenarios. In the first framework, the prior is inferred by the system from a wide collection of feature based priors, following an Expectation-Maximization approach to obtain the most probable structure and the most probable map. The representation of the structure of the environment is based on a hierarchical model with different levels of abstraction for the geometrical elements describing it. Various experiments were conducted to show the versatility and the good performance of the proposed method. In the second framework, different priors can be defined by the user as sets of local constraints and energies for consecutive points in a range scan from a given environment. The set of constraints applied to each group of points depends on the topology, which is inferred by the system. This way, flexible and generic priors can be incorporated very easily. Several tests were carried out to demonstrate the flexibility and the good results of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adhesives used for applications in marine environments are subject to particular chemical conditions, which are mainly characterised by an elevated chlorine ion content and intermittent wetting/drying cycles, among others.These conditions can limit the use of adhesives due to the degradation processes that they experience. In this work, the chemical degradation of two different polymers, polyurethane and vinylester, was studied in natural seawater under immersion for different periods of time.The diffusion coefficients and concentration profiles of water throughout the thickness of the adhesiveswere obtained.Microstructural changes in the polymer due to the action of water were observed by SEM, and the chemical degradation of the polymer was monitored with the Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The degradation of the mechanical properties of the adhesive was determined by creep tests withMixed Cantilever Beam (MCB) specimens at different temperatures. After 180 days of immersion of the specimens, it was concluded that the J-integral value (depending on the strain) implies a loss of stiffness of 51% and a decrease in the failure load of 59% for the adhesive tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mobile user experience has been significantly altered with the arrival of mobile broadband widespread deployments, massive improvements in available smartphones, and a shift in user habits toward a more participative, communicative role. In this context, mobile application stores have revolutionized software and content delivery. These stores focus on the applications, building around them an ecosystem of developers and consumers. The store greatly lessens the barrier between these agents, providing significant benefits to both developers and consumers. In this article we analyze this phenomenon, describing its originating factors and fundamental characteristics. We also perform a more detailed study on the two most successful application stores, identifying different approaches to implementing the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATM, SDH or satellite have been used in the last century as the contribution network of Broadcasters. However the attractive price of IP networks is changing the infrastructure of these networks in the last decade. Nowadays, IP networks are widely used, but their characteristics do not offer the level of performance required to carry high quality video under certain circumstances. Data transmission is always subject to errors on line. In the case of streaming, correction is attempted at destination, while on transfer of files, retransmissions of information are conducted and a reliable copy of the file is obtained. In the latter case, reception time is penalized because of the low priority this type of traffic on the networks usually has. While in streaming, image quality is adapted to line speed, and line errors result in a decrease of quality at destination, in the file copy the difference between coding speed vs line speed and errors in transmission are reflected in an increase of transmission time. The way news or audiovisual programs are transferred from a remote office to the production centre depends on the time window and the type of line available; in many cases, it must be done in real time (streaming), with the resulting image degradation. The main purpose of this work is the workflow optimization and the image quality maximization, for that reason a transmission model for multimedia files adapted to JPEG2000, is described based on the combination of advantages of file transmission and those of streaming transmission, putting aside the disadvantages that these models have. The method is based on two patents and consists of the safe transfer of the headers and data considered to be vital for reproduction. Aside, the rest of the data is sent by streaming, being able to carry out recuperation operations and error concealment. Using this model, image quality is maximized according to the time window. In this paper, we will first give a briefest overview of the broadcasters requirements and the solutions with IP networks. We will then focus on a different solution for video file transfer. We will take the example of a broadcast center with mobile units (unidirectional video link) and regional headends (bidirectional link), and we will also present a video file transfer file method that satisfies the broadcaster requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing activity recognition using the information provided by the different sensors embedded in a smartphone face limitations due to the capabilities of those devices when the computations are carried out in the terminal. In this work a fuzzy inference module is implemented in order to decide which classifier is the most appropriate to be used at a specific moment regarding the application requirements and the device context characterized by its battery level, available memory and CPU load. The set of classifiers that is considered is composed of Decision Tables and Trees that have been trained using different number of sensors and features. In addition, some classifiers perform activity recognition regardless of the on-body device position and others rely on the previous recognition of that position to use a classifier that is trained with measurements gathered with the mobile placed on that specific position. The modules implemented show that an evaluation of the classifiers allows sorting them so the fuzzy inference module can choose periodically the one that best suits the device context and application requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of inertial sensors embedded in mobile devices has enabled a new type of interaction based on the movements or “gestures” made by the users when holding the device. In this paper we propose a gesture recognition system for mobile devices based on accelerometer and gyroscope measurements. The system is capable of recognizing a set of predefined gestures in a user-independent way, without the need of a training phase. Furthermore, it was designed to be executed in real-time in resource-constrained devices, and therefore has a low computational complexity. The performance of the system is evaluated offline using a dataset of gestures, and also online, through some user tests with the system running in a smart phone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo de Tesis se desarrolla en el marco de los escenarios de ejecución distribuida de servicios móviles y contribuye a la definición y desarrollo del concepto de usuario prosumer. El usuario prosumer se caracteriza por utilizar su teléfono móvil para crear, proveer y ejecutar servicios. Este nuevo modelo de usuario contribuye al avance de la sociedad de la información, ya que el usuario prosumer se transforma de creador de contenidos a creador de servicios (estos últimos formados por contenidos y la lógica para acceder a ellos, procesarlos y representarlos). El objetivo general de este trabajo de Tesis es la provisión de un modelo de creación, distribución y ejecución de servicios para entorno móvil que permita a los usuarios no programadores (usuarios prosumer), pero expertos en un determinado dominio, crear y ejecutar sus propias aplicaciones y servicios. Para ello se definen, desarrollan e implementan metodologías, procesos, algoritmos y mecanismos adaptables a dominios específicos, para construir entornos de ejecución distribuida de servicios móviles para usuarios prosumer. La provisión de herramientas de creación adaptadas a usuarios no expertos es una tendencia actual que está siendo desarrollada en distintos trabajos de investigación. Sin embargo, no se ha propuesto una metodología de desarrollo de servicios que involucre al usuario prosumer en el proceso de diseño, desarrollo, implementación y validación de servicios. Este trabajo de Tesis realiza un estudio de las metodologías y tecnologías más innovadoras relacionadas con la co‐creación y utiliza este análisis para definir y validar una metodología que habilita al usuario para ser el responsable de la creación de servicios finales. Siendo los entornos móviles prosumer (mobile prosumer environments) una particularización de los entornos de ejecución distribuida de servicios móviles, en este trabajo se tesis se investiga en técnicas de adaptación, distribución, coordinación de servicios y acceso a recursos identificando como requisitos las problemáticas de este tipo de entornos y las características de los usuarios que participan en los mismos. Se contribuye a la adaptación de servicios definiendo un modelo de variabilidad que soporte la interdependencia entre las decisiones de personalización de los usuarios, incorporando mecanismos de guiado y detección de errores. La distribución de servicios se implementa utilizando técnicas de descomposición en árbol SPQR, cuantificando el impacto de separar cualquier servicio en distintos dominios. Considerando el plano de comunicaciones para la coordinación en la ejecución de servicios distribuidos hemos identificado varias problemáticas, como las pérdidas de enlace, conexiones, desconexiones y descubrimiento de participantes, que resolvemos utilizando técnicas de diseminación basadas en publicación subscripción y algoritmos Gossip. Para lograr una ejecución flexible de servicios distribuidos en entorno móvil, soportamos la adaptación a cambios en la disponibilidad de los recursos, proporcionando una infraestructura de comunicaciones para el acceso uniforme y eficiente a recursos. Se han realizado validaciones experimentales para evaluar la viabilidad de las soluciones propuestas, definiendo escenarios de aplicación relevantes (el nuevo universo inteligente, prosumerización de servicios en entornos hospitalarios y emergencias en la web de la cosas). Abstract This Thesis work is developed in the framework of distributed execution of mobile services and contributes to the definition and development of the concept of prosumer user. The prosumer user is characterized by using his mobile phone to create, provide and execute services. This new user model contributes to the advancement of the information society, as the prosumer is transformed from producer of content, to producer of services (consisting of content and logic to access them, process them and represent them). The overall goal of this Thesis work is to provide a model for creation, distribution and execution of services for the mobile environment that enables non‐programmers (prosumer users), but experts in a given domain, to create and execute their own applications and services. For this purpose I define, develop and implement methodologies, processes, algorithms and mechanisms, adapted to specific domains, to build distributed environments for the execution of mobile services for prosumer users. The provision of creation tools adapted to non‐expert users is a current trend that is being developed in different research works. However, it has not been proposed a service development methodology involving the prosumer user in the process of design, development, implementation and validation of services. This thesis work studies innovative methodologies and technologies related to the co‐creation and relies on this analysis to define and validate a methodological approach that enables the user to be responsible for creating final services. Being mobile prosumer environments a specific case of environments for distributed execution of mobile services, this Thesis work researches in service adaptation, distribution, coordination and resource access techniques, and identifies as requirements the challenges of such environments and characteristics of the participating users. I contribute to service adaptation by defining a variability model that supports the dependency of user personalization decisions, incorporating guiding and error detection mechanisms. Service distribution is implemented by using decomposition techniques based on SPQR trees, quantifying the impact of separating any service in different domains. Considering the communication level for the coordination of distributed service executions I have identified several problems, such as link losses, connections, disconnections and discovery of participants, which I solve using dissemination techniques based on publish‐subscribe communication models and Gossip algorithms. To achieve a flexible distributed service execution in mobile environments, I support adaptation to changes in the availability of resources, while providing a communication infrastructure for the uniform and efficient access to resources. Experimental validations have been conducted to assess the feasibility of the proposed solutions, defining relevant application scenarios (the new intelligent universe, service prosumerization in hospitals and emergency situations in the web of things).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new concept in light level detection. The basis is the use of hybrid optical bistable devices working in oscillatory mode. The obtained instabilities show a correspondence between their frequency and the laser light intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Location-based services (LBS) highly rely on the location of the mobile user in order to provide the service tailored to that location. This location is calculated differently depending on the technology available in the used mobile device. No matter which technology is used, the location will never be calculated 100% correctly; instead there will always be a margin of error generated during the calculation, which is referred to as positional accuracy. This research has reviewed the eight most common positioning technologies available in the major current smart-phones and assessed their positional accuracy with respect to its usage by LBS applications. Given the vast majority of these applications, this research classified them into thirteen categories, and these categories were also classified depending on their level criticality as low, medium, or high critical, and whether they function indoor or outdoor. The accuracies of different positioning technologies are compared to these two criteria. Low critical outdoor and high critical indoor applications were found technologically covered; high and medium critical outdoor ones weren?t fully resolved. Finally three potential solutions are suggested to be implemented in future smartphones to resolve this technological gap: Real-Time Kinematics Global Positioning System (RTK GPS), terrestrial transmitters, and combination of Wireless Sensors Network and Radio Frequency Identification (WSN-RFID).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Batteries and ultracapacitors for hybrid and electric vehicles must satisfy very demanding working conditions that are not usual in other applications. In this sense, specific tests must be performed in order to draw accurate conclusions about their behaviour. To do so, new advanced test benches are needed. These platforms must allow the study of a wide variety of energy storage systems under conditions similar to the real ones. In this paper, a flexible, low-cost and highly customizable system is presented. This system allows batteries and ultracapacitors to be tested in many and varied ways, effectively emulating the working conditions that they face in an electric vehicle. The platform was specifically designed to study energy storage systems for electric and hybrid vehicles, meaning that it is suitable to test different systems in many different working conditions, including real driving cycles. This flexibility is achieved keeping the cost of the platform low, which makes the proposed test bench a feasible alternative for the industry. As an example of the functionality of the platform, a test consisting of a 17-minute ARTEMIS urban cycle with a NiMH battery pack is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maximizing energy autonomy is a consistent challenge when deploying mobile robots in ionizing radiation or other hazardous environments. Having a reliable robot system is essential for successful execution of missions and to avoid manual recovery of the robots in environments that are harmful to human beings. For deployment of robots missions at short notice, the ability to know beforehand the energy required for performing the task is essential. This paper presents a on-line method for predicting energy requirements based on the pre-determined power models for a mobile robot. A small mobile robot, Khepera III is used for the experimental study and the results are promising with high prediction accuracy. The applications of the energy prediction models in energy optimization and simulations are also discussed along with examples of significant energy savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the technological framework of Information and Communication Technologies (ICT), consumers are currently requesting multimedia services with simplicity of use, reliability, security and service availability through mobile and fixed access. Network operators are proposing the Next Generation Networks (NGN) to address the challenges of providing both services and network convergence. Apart from these considerations, there is a need to provide social and healthcare assistance services in order to support the progressive aging in the elderly population. In order to achieve this objective, the Ambient Assisted Living (AAL) initiative proposes ICT systems and services to promote autonomy and an independent life among the elderly. This paper describes the design and implementation of a group of services, called “service enablers”, which helps AAL applications to be supported in NGN. The presented enablers are identified to support the teleconsulting applications requirements in an NGN environment, involving the implementation of a virtual waiting room, a virtual whiteboard, a multimedia multiconference and a vital-signs monitoring presence status. A use case is defined and implemented to evaluate the developed enablers' performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A photovoltaic (PV) hybrid system combines PV with other forms of electricity generation, usually a diesel generator. The system presented in this paper uses concentration photovoltaic (CPV) as the main generator in combination with a storage system and the grid, configured as the backup power supply. The load of the system consists of an air conditioning system of an office building. This paper presents the results obtained from the first months of operation of the CPV hybrid system installed at Instituto de Sistemas Fotovoltaicos de Concentración facilities together with exhaustive simulations in order to model the system behaviour and be able to improve the self-consumption ratio. This system represents a first approach to the use of a CPV in office buildings complemented by an existing AC-coupled hybrid system. The contribution of this paper to the analysis of this new system and the existing tools available for its simulation, at least a part of it, can be considered as a starting point for the development of these kinds of systems.