45 resultados para Graph mining
Resumo:
Colombia is one of the largest per capita mercury polluters in the world as a consequence of its artisanal gold mining activities. The severity of this problem in terms of potential health effects was evaluated by means of a probabilistic risk assessment carried out in the twelve departments (or provinces) in Colombia with the largest gold production. The two exposure pathways included in the risk assessment were inhalation of elemental Hg vapors and ingestion of fish contaminated with methyl mercury. Exposure parameters for the adult population (especially rates of fish consumption) were obtained from nation-wide surveys and concentrations of Hg in air and of methyl-mercury in fish were gathered from previous scientific studies. Fish consumption varied between departments and ranged from 0 to 0.3 kg d?1. Average concentrations of total mercury in fish (70 data) ranged from 0.026 to 3.3 lg g?1. A total of 550 individual measurements of Hg in workshop air (ranging from menor queDL to 1 mg m?3) and 261 measurements of Hg in outdoor air (ranging from menor queDL to 0.652 mg m?3) were used to generate the probability distributions used as concentration terms in the calculation of risk. All but two of the distributions of Hazard Quotients (HQ) associated with ingestion of Hg-contaminated fish for the twelve regions evaluated presented median values higher than the threshold value of 1 and the 95th percentiles ranged from 4 to 90. In the case of exposure to Hg vapors, minimum values of HQ for the general population exceeded 1 in all the towns included in this study, and the HQs for miner-smelters burning the amalgam is two orders of magnitude higher, reaching values of 200 for the 95th percentile. Even acknowledging the conservative assumptions included in the risk assessment and the uncertainties associated with it, its results clearly reveal the exorbitant levels of risk endured not only by miner-smelters but also by the general population of artisanal gold mining communities in Colombia.
Resumo:
In this paper we provide a method that allows the visualization of similarity relationships present between items of collaborative filtering recommender systems, as well as the relative importance of each of these. The objective is to offer visual representations of the recommender system?s set of items and of their relationships; these graphs show us where the most representative information can be found and which items are rated in a more similar way by the recommender system?s community of users. The visual representations achieved take the shape of phylogenetic trees, displaying the numerical similarity and the reliability between each pair of items considered to be similar. As a case study we provide the results obtained using the public database Movielens 1M, which contains 3900 movies.
Resumo:
The aim of this paper is to develop a probabilistic modeling framework for the segmentation of structures of interest from a collection of atlases. Given a subset of registered atlases into the target image for a particular Region of Interest (ROI), a statistical model of appearance and shape is computed for fusing the labels. Segmentations are obtained by minimizing an energy function associated with the proposed model, using a graph-cut technique. We test different label fusion methods on publicly available MR images of human brains.
Resumo:
La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.
Resumo:
Colombia is one the largest per capita mercury polluters as a consequence of its artisanal gold mining operations, which are steadily increasing following the rising price of this metal. Compared to gravimetric separation methods and cyanidation, the concentration of gold using Hg amalgams presents several advantages: the process is less time-consuming and minimizes gold losses, and Hg is easily transported and inexpensive relative to the selling price of gold. Very often, mercury amalgamation is carried out on site by unprotected workers. During this operation large amounts of mercury are discharged to the environment and eventually reach the fresh water bodies in the vicinity where it is subjected to methylation. Additionally, as gold is released from the amalgam by heating on open charcoal furnaces in small workshops, mercury vapors are emitted and inhaled by the artisanal smelters and the general population
Resumo:
In the past, mining wastes were left wherever they might lie in the surroundings of the mine area. Unfortunately, inactive and abandoned mines continue to pollute our environment, reason why these sites should be restored with minimum impact. Phytoextraction is an environmental-friendly and cost-effective technology less harmful than traditional methods that uses metal hyperaccumulator or at least tolerant plants to extract heavy metals from polluted soils. One disadvantage of hyperaccumulator species is their slow growth rate and low biomass production. Vetiveria zizanioides (L.) Nash, perennial species adapted to Mediterranean climate has a strong root system which can reach up to 3 m deep, is fast growing, and can survive in sites with high metal levels (Chen et al., 2004). Due to the fact that metals in abandoned mine tailings become strongly bonded to soil solids, humic acids used as chelating agents could increase metal bioavailability (Evangelou et al., 2004; Wilde et al., 2005) and thereby promote higher accumulation in the harvestable parts of the plant. The objective of this study was to examine the performance of humic acid assisted phytoextraction using Vetiveria zizanioides (L.) Nash in heavy metals contaminated soils.
Resumo:
La predicción del valor de las acciones en la bolsa de valores ha sido un tema importante en el campo de inversiones, que por varios años ha atraído tanto a académicos como a inversionistas. Esto supone que la información disponible en el pasado de la compañía que cotiza en bolsa tiene alguna implicación en el futuro del valor de la misma. Este trabajo está enfocado en ayudar a un persona u organismo que decida invertir en la bolsa de valores a través de gestión de compra o venta de acciones de una compañía a tomar decisiones respecto al tiempo de comprar o vender basado en el conocimiento obtenido de los valores históricos de las acciones de una compañía en la bolsa de valores. Esta decisión será inferida a partir de un modelo de regresión múltiple que es una de las técnicas de datamining. Para llevar conseguir esto se emplea una metodología conocida como CRISP-DM aplicada a los datos históricos de la compañía con mayor valor actual del NASDAQ.---ABSTRACT---The prediction of the value of shares in the stock market has been a major issue in the field of investments, which for several years has attracted both academics and investors. This means that the information available in the company last traded have any involvement in the future of the value of it. This work is focused on helping an investor decides to invest in the stock market through management buy or sell shares of a company to make decisions with respect to time to buy or sell based on the knowledge gained from the historic values of the shares of a company in the stock market. This decision will be inferred from a multiple regression model which is one of the techniques of data mining. To get this out a methodology known as CRISP-DM applied to historical data of the company with the highest current value of NASDAQ is used.
Resumo:
Con el auge del Cloud Computing, las aplicaciones de proceso de datos han sufrido un incremento de demanda, y por ello ha cobrado importancia lograr m�ás eficiencia en los Centros de Proceso de datos. El objetivo de este trabajo es la obtenci�ón de herramientas que permitan analizar la viabilidad y rentabilidad de diseñar Centros de Datos especializados para procesamiento de datos, con una arquitectura, sistemas de refrigeraci�ón, etc. adaptados. Algunas aplicaciones de procesamiento de datos se benefician de las arquitecturas software, mientras que en otras puede ser m�ás eficiente un procesamiento con arquitectura hardware. Debido a que ya hay software con muy buenos resultados en el procesamiento de grafos, como el sistema XPregel, en este proyecto se realizará una arquitectura hardware en VHDL, implementando el algoritmo PageRank de Google de forma escalable. Se ha escogido este algoritmo ya que podr��á ser m�ás eficiente en arquitectura hardware, debido a sus características concretas que se indicaráan m�ás adelante. PageRank sirve para ordenar las p�áginas por su relevancia en la web, utilizando para ello la teorí��a de grafos, siendo cada página web un vértice de un grafo; y los enlaces entre páginas, las aristas del citado grafo. En este proyecto, primero se realizará un an�álisis del estado de la técnica. Se supone que la implementaci�ón en XPregel, un sistema de procesamiento de grafos, es una de las m�ás eficientes. Por ello se estudiará esta �ultima implementaci�ón. Sin embargo, debido a que Xpregel procesa, en general, algoritmos que trabajan con grafos; no tiene en cuenta ciertas caracterí��sticas del algoritmo PageRank, por lo que la implementaci�on no es �optima. Esto es debido a que en PageRank, almacenar todos los datos que manda un mismo v�értice es un gasto innecesario de memoria ya que todos los mensajes que manda un vértice son iguales entre sí e iguales a su PageRank. Se realizará el diseño en VHDL teniendo en cuenta esta caracter��ística del citado algoritmo,evitando almacenar varias veces los mensajes que son iguales. Se ha elegido implementar PageRank en VHDL porque actualmente las arquitecturas de los sistemas operativos no escalan adecuadamente. Se busca evaluar si con otra arquitectura se obtienen mejores resultados. Se realizará un diseño partiendo de cero, utilizando la memoria ROM de IPcore de Xillinx (Software de desarrollo en VHDL), generada autom�áticamente. Se considera hacer cuatro tipos de módulos para que as�� el procesamiento se pueda hacer en paralelo. Se simplificar�á la estructura de XPregel con el fin de intentar aprovechar la particularidad de PageRank mencionada, que hace que XPregel no le saque el m�aximo partido. Despu�és se escribirá el c�ódigo, realizando una estructura escalable, ya que en la computación intervienen millones de páginas web. A continuación, se sintetizar�á y se probará el código en una FPGA. El �ultimo paso será una evaluaci�ón de la implementaci�ón, y de posibles mejoras en cuanto al consumo.
Resumo:
The mobile apps market is a tremendous success, with millions of apps downloaded and used every day by users spread all around the world. For apps’ developers, having their apps published on one of the major app stores (e.g. Google Play market) is just the beginning of the apps lifecycle. Indeed, in order to successfully compete with the other apps in the market, an app has to be updated frequently by adding new attractive features and by fixing existing bugs. Clearly, any developer interested in increasing the success of her app should try to implement features desired by the app’s users and to fix bugs affecting the user experience of many of them. A precious source of information to decide how to collect users’ opinions and wishes is represented by the reviews left by users on the store from which they downloaded the app. However, to exploit such information the app’s developer should manually read each user review and verify if it contains useful information (e.g. suggestions for new features). This is something not doable if the app receives hundreds of reviews per day, as happens for the very popular apps on the market. In this work, our aim is to provide support to mobile apps developers by proposing a novel approach exploiting data mining, natural language processing, machine learning, and clustering techniques in order to classify the user reviews on the basis of the information they contain (e.g. useless, suggestion for new features, bugs reporting). Such an approach has been empirically evaluated and made available in a web-‐based tool publicly available to all apps’ developers. The achieved results showed that the developed tool: (i) is able to correctly categorise user reviews on the basis of their content (e.g. isolating those reporting bugs) with 78% of accuracy, (ii) produces clusters of reviews (e.g. groups together reviews indicating exactly the same bug to be fixed) that are meaningful from a developer’s point-‐of-‐view, and (iii) is considered useful by a software company working in the mobile apps’ development market.
Resumo:
La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.
Resumo:
La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.
Resumo:
Esta memoria es el resultado de un proyecto cuyo objetivo ha sido realizar un análisis de la posible aplicación de técnicas relativas al Process Mining para entornos AmI (Ambient Intelligence). Dicho análisis tiene la facultad de presentar de forma clara los resultados extraídos de los procesos relativos a un caso de uso planteado, así como de aplicar dichos resultados a aplicaciones relativas a entornos AmI, como automatización de tareas o simulación social basada en agentes. Para que dicho análisis sea comprensible por el lector, se presentan detalladas explicaciones de los conceptos tratados y las técnicas empleadas. Además, se analizan exhaustivamente las dos herramientas software más utilizadas en cuanto a minería de procesos se refiere, ProM y Disco, presentando ventajas e inconvenientes de cada una, así como una comparación entre las dos. Posteriormente se ha desarrollado una metodología para el análisis de procesos con la herramienta ProM, anteriormente mencionada, explicando cuidadosamente cada uno de los pasos así como los fundamentos de los algoritmos utilizados. Por último, se han presentado las conclusiones extraídas del trabajo, así como las posibles líneas de continuación del proyecto.
Resumo:
Esta tesis presenta el diseño y la aplicación de una metodología que permite la determinación de los parámetros para la planificación de nodos e infraestructuras logísticas en un territorio, considerando además el impacto de estas en los diferentes componentes territoriales, así como en el desarrollo poblacional, el desarrollo económico y el medio ambiente, presentando así un avance en la planificación integral del territorio. La Metodología propuesta está basada en Minería de Datos, que permite el descubrimiento de patrones detrás de grandes volúmenes de datos previamente procesados. Las características propias de los datos sobre el territorio y los componentes que lo conforman hacen de los estudios territoriales un campo ideal para la aplicación de algunas de las técnicas de Minería de Datos, tales como los ´arboles decisión y las redes bayesianas. Los árboles de decisión permiten representar y categorizar de forma esquemática una serie de variables de predicción que ayudan al análisis de una variable objetivo. Las redes bayesianas representan en un grafo acíclico dirigido, un modelo probabilístico de variables distribuidas en padres e hijos, y la inferencia estadística que permite determinar la probabilidad de certeza de una hipótesis planteada, es decir, permiten construir modelos de probabilidad conjunta que presentan de manera gráfica las dependencias relevantes en un conjunto de datos. Al igual que con los árboles de decisión, la división del territorio en diferentes unidades administrativas hace de las redes bayesianas una herramienta potencial para definir las características físicas de alguna tipología especifica de infraestructura logística tomando en consideración las características territoriales, poblacionales y económicas del área donde se plantea su desarrollo y las posibles sinergias que se puedan presentar sobre otros nodos e infraestructuras logísticas. El caso de estudio seleccionado para la aplicación de la metodología ha sido la República de Panamá, considerando que este país presenta algunas características singulares, entra las que destacan su alta concentración de población en la Ciudad de Panamá; que a su vez a concentrado la actividad económica del país; su alto porcentaje de zonas protegidas, lo que ha limitado la vertebración del territorio; y el Canal de Panamá y los puertos de contenedores adyacentes al mismo. La metodología se divide en tres fases principales: Fase 1: Determinación del escenario de trabajo 1. Revisión del estado del arte. 2. Determinación y obtención de las variables de estudio. Fase 2: Desarrollo del modelo de inteligencia artificial 3. Construcción de los ´arboles de decisión. 4. Construcción de las redes bayesianas. Fase 3: Conclusiones 5. Determinación de las conclusiones. Con relación al modelo de planificación aplicado al caso de estudio, una vez aplicada la metodología, se estableció un modelo compuesto por 47 variables que definen la planificación logística de Panamá, el resto de variables se definen a partir de estas, es decir, conocidas estas, el resto se definen a través de ellas. Este modelo de planificación establecido a través de la red bayesiana considera los aspectos de una planificación sostenible: económica, social y ambiental; que crean sinergia con la planificación de nodos e infraestructuras logísticas. The thesis presents the design and application of a methodology that allows the determination of parameters for the planning of nodes and logistics infrastructure in a territory, besides considering the impact of these different territorial components, as well as the population growth, economic and environmental development. The proposed methodology is based on Data Mining, which allows the discovery of patterns behind large volumes of previously processed data. The own characteristics of the territorial data makes of territorial studies an ideal field of knowledge for the implementation of some of the Data Mining techniques, such as Decision Trees and Bayesian Networks. Decision trees categorize schematically a series of predictor variables of an analyzed objective variable. Bayesian Networks represent a directed acyclic graph, a probabilistic model of variables divided in fathers and sons, and statistical inference that allow determine the probability of certainty in a hypothesis. The case of study for the application of the methodology is the Republic of Panama. This country has some unique features: a high population density in the Panama City, a concentration of economic activity, a high percentage of protected areas, and the Panama Canal. The methodology is divided into three main phases: Phase 1: definition of the work stage. 1. Review of the State of the art. 2. Determination of the variables. Phase 2: Development of artificial intelligence model 3. Construction of decision trees. 4. Construction of Bayesian Networks. Phase 3: conclusions 5. Determination of the conclusions. The application of the methodology to the case study established a model composed of 47 variables that define the logistics planning for Panama. This model of planning established through the Bayesian network considers aspects of sustainable planning and simulates the synergies between the nodes and logistical infrastructure planning.
Resumo:
Como la demanda de la sociedad de metal aumenta, la tasa de extracción de minerales hace lo mismo. Esto contribuye al aumento de las implicaciones ambientales en forma de emisiones y el agotamiento de los recursos naturales. El reciclaje es una fuente importante para satisfacer la demanda de metales; como mucho un 30% de la demanda de metal está cubierto por el reciclaje en algunos mercados. Otra forma de reciclaje es la práctica de Urban Mining. El presente trabajo estudia la potencialidad del Landfill Mining en los vertederos españoles. Este concepto denomina el proceso de recuperación de materiales residuales depositados en vertederos para su uso posterior como materiales secundarios y, cuando ello no es posible, para su reaprovechamiento energético. Como consecuencia esto implica el cumplimiento de un segundo objetivo: la reducción o mitigación de las emisiones de gases de efecto invernadero derivadas de la presencia de residuos en vertederos.
Resumo:
A novel pedestrian motion prediction technique is presented in this paper. Its main achievement regards to none previous observation, any knowledge of pedestrian trajectories nor the existence of possible destinations is required; hence making it useful for autonomous surveillance applications. Prediction only requires initial position of the pedestrian and a 2D representation of the scenario as occupancy grid. First, it uses the Fast Marching Method (FMM) to calculate the pedestrian arrival time for each position in the map and then, the likelihood that the pedestrian reaches those positions is estimated. The technique has been tested with synthetic and real scenarios. In all cases, accurate probability maps as well as their representative graphs were obtained with low computational cost.