33 resultados para Flat-plate
Resumo:
A specific numerical procedure for the analysis of arbitrary nonprismatic folded plate structures is presented. An elastic model is studied and compared with a harmonic solution for a prismatic structure. An extension to the plastic analysis is developed, and the influence of the structural geometry and loading pattern is analyzed. Nonprismatic practical cases, with arbitrary geometry and loading are shown, as well in the elastic range as in the plastic one. Finally, a dynamic formulation is outlined
Resumo:
This paper is part of a set of publications related with the development of mathematical models aimed to simulate the dynamic input and output of experimental nondestructive tests in order to detect structural imperfections. The structures to be considered are composed by steel plates of thin thickness. The imperfections in these cases are cracks and they can penetrate either a significant part of the plate thickness or be micro cracks or superficial imperfections. The first class of cracks is related with structural safety and the second one is more connected to the structural protection to the environment, particularly if protective paintings can be deteriorated. Two mathematical groups of models have been developed. The first group tries to locate the position and extension of the imperfection of the first class of imperfections, i.e. cracks and it is the object of the present paper. Bending Kirchoff thin plate models belong to this first group and they are used to this respect. The another group of models is dealt with membrane structures under the superficial Rayleigh waves excitation. With this group of models the micro cracks detection is intended. In the application of the first group of models to the detection of cracks, it has been observed that the differences between the natural frequencies of the non cracked and the cracked structures are very small. However, geometry and crack position can be identified quite accurately if this comparison is carried out between first derivatives (mode rotations) of the natural modes are used instead. Finally, in relation with the analysis of the superficial crack existence the use of Rayleigh waves is very promising. The geometry and the penetration of the micro crack can be detected very accurately. The mathematical and numerical treatment of the generation of these Rayleigh waves present and a numerical application has been shown.
Resumo:
A Mindlin plate with periodically distributed ribs patterns is analyzed by using homogenization techniques based on asymptotic expansion methods. The stiffness matrix of the homogenized plate is found to be dependent on the geometrical characteristics of the periodical cell, i.e. its skewness, plan shape, thickness variation etc. and on the plate material elastic constants. The computation of this plate stiffness matrix is carried out by averaging over the cell domain some solutions of different periodical boundary value problems. These boundary value problems are defined in variational form by linear first order differential operators on the cell domain and the boundary conditions of the variational equation correspond to a periodic structural problem. The elements of the stiffness matrix of homogenized plate are obtained by linear combinations of the averaged solution functions of the above mentioned boundary value problems. Finally, an illustrative example of application of this homogenization technique to hollowed plates and plate structures with ribs patterns regularly arranged over its area is shown. The possibility of using in the profesional practice the present procedure to the actual analysis of floors of typical buildings is also emphasized.