39 resultados para Fernández Alvarez, Manuel, 1921-
Resumo:
HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here.
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
Due to the particular characteristics of the fusion products, i.e. very short pulses (less than a few μs long for ions when arriving to the walls; less than 1 ns long for X-rays), very high fluences ( 10 13 particles/cm 2 for both ions and X rays photons) and broad particle energy spectra (up to 10 MeV ions and 100 keV photons), the laser fusion community lacks of facilities to accurately test plasma facing materials under those conditions. In the present work, the ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce those ion and X-ray bursts. Based on those parameters, a comparison between fusion ion and laser driven ion beams is presented and discussed, describing a possible experimental set-up to generate with lasers the appropriate ion pulses. At the same time, the possibility of generating X-ray or neutron beams which simulate those of laser fusion environments is also indicated and assessed under current laser intensities. It is concluded that ultraintense lasers should play a relevant role in the validation of materials for laser fusion facilities.
Resumo:
The ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce ion and X-ray ICF bursts for the characterization and validation of plasma facing components. The possibility of using a laser neutron source for material testing will also be discussed.
Resumo:
The basics of laser driven neutron sources, properties and possible applications are discussed. We describe the laser driven nuclear processes which trigger neutron generation, namely, nuclear reactions induced by laser driven ion beam (ion n), thermonuclear fusion by implosion and photo-induced nuclear (gamma n) reactions. Based on their main properties, i.e. point source (<100 μm) and short durations (< ns), different applications are described, such as radiography, time-resolved spectroscopy and pump-probe experiments. Prospects on the development of laser technology suggest that, as higher intensities and higher repetition rate lasers become available (for example, using DPSSL technology), laser driven methodologies may provide neutron fluxes comparable to that achieved by accelerator driven neutron sources in the near future.
Resumo:
Artículos publicados sobre Antonio Fernández Alba en el diario El País
Resumo:
Memoria de prácticas-Viaje a Puertollano-Visita a las minas y fábricas de Asturias-Mina de carbón de Arnao-Fábrica de La Felguera
Resumo:
In recent years, coinciding with adjustments to the Bologna process, many European universities have attempted to improve their international profile by increasing course offerings in English. According to the Institute of International Education (IIE), Spain has notably increased its English-taught higher education programs, ranking fifth in the list of European countries by number of English-taught Master's programs in 2013. This article presents the goals and preliminary results of an on-going innovative education project (TechEnglish) that aims to promote course offerings in English at the Technical University of Madrid (Universidad Politécnica de Madrid, UPM). The UPM is the oldest and largest of all Technical Universities in Spain. It offers graduate and postgraduate programs that cover all the engineering disciplines as well as architecture. Currently, the UPM has no specific bilingual/multilingual program to promote teaching in English, although there is an Educational Model Whitepaper (with a focus on undergraduate degrees) that promotes the development of activities like an International Semester or a unique shared curriculum. The TechEnglish project is an attempt to foster courses taught in English at 7 UPM Technical Schools, including students and 80 faculty members. Four tasks were identified: (1) to design a university wide framework to increase course offerings, (2) to identify administrative difficulties, (3) to increase visibility of courses offered, and (4) to disseminate the results of the project. First, to design a program we analyzed existing programs at other Spanish universities, and other projects and efforts already under way at the UPM. A total of 13 plans were analyzed and classified according to their relation with students (learning), professors (teaching), administration, course offerings, other actors/institutions within the university (e.g., language departments), funds and projects, dissemination activities, mobility plans and quality control. Second, to begin to identify administrative and organizational difficulties in the implementation of teaching in English, we first estimated the current and potential course offerings at the undergraduate level at the UPM using a survey (student, teacher and administrative demand, level of English and willingness to work in English). Third, to make the course offerings more attractive for both Spanish and international students we examined the way the most prestigious universities in Spain and in Europe try to improve the visibility of their academic offerings in English. Finally, to disseminate the results of the project we created a web page and a workspace on the Moodle education platform and prepared conferences and workshops within the UPM. Preliminary results show that increasing course offerings in English is an important step to promote the internationalization of the University. The main difficulties identified at the UPM were related to how to acknowledge/certify the departments, teachers or students involved in English courses, how students should register for the courses, how departments should split and schedule the courses (Spanish and English), and the lack of qualified personnel. A concerted effort could be made to increase the visibility of English-taught programs offered on-line.