76 resultados para Euler discretization
Resumo:
In this paper a fuzzy optimal control for stabilizing an upright position a double inverted pendulum (DIP) is developed and compared. Modeling is based on Euler-Lagrange equations. This results in a complicated nonlinear fast reaction, unstable multivariable system. Firstly, the mathematical models of double pendulum system are presented. The weight variable fuzzy input is gained by combining the fuzzy control theory with the optimal control theory. Simulation results show that the controller, which the upper pendulum is considered as main control variable, has high accuracy, quick convergence speed and higher precision.
Resumo:
This paper presents some of the modelling criteria that have been used for the study of pyrotechnic shock propagation in the A5 VEB Structure, as well as the main conclusions from a mathematical model of the axymmetric effects in it. The separation of the lower stage of the ARIANE 5 Vehicle Equipment Bay (VEB)Structure is to be done using a pyrotechnic device. The wave propagation effects produced by the explosion have been analyzed with a computer program using as shape functions the analytical solution to the frequency response of a Timoshenko-Rayleigh beams and shells in that way the discretization can have elements as large as possible, depending on the material properties and boundary conditions. Moreover an enormous amount of possibilities in the treatment of concentrated masses, springs and dashpots, either with respect to a fixed reference or between nodes, is open for translational as well as rotational degrees of freedom.
Resumo:
The analysis of deformation in soils is of paramount importance in geotechnical engineering. For a long time the complex behaviour of natural deposits defied the ingenuity of engineers. The time has come that, with the aid of computers, numerical methods will allow the solution of every problem if the material law can be specified with a certain accuracy. Boundary Techniques (B.E.) have recently exploded in a splendid flowering of methods and applications that compare advantegeously with other well-established procedures like the finite element method (F.E.). Its application to soil mechanics problems (Brebbia 1981) has started and will grow in the future. This paper tries to present a simple formulation to a classical problem. In fact, there is already a large amount of application of B.E. to diffusion problems (Rizzo et al, Shaw, Chang et al, Combescure et al, Wrobel et al, Roures et al, Onishi et al) and very recently the first specific application to consolidation problems has been published by Bnishi et al. Here we develop an alternative formulation to that presented in the last reference. Fundamentally the idea is to introduce a finite difference discretization in the time domain in order to use the fundamental solution of a Helmholtz type equation governing the neutral pressure distribution. Although this procedure seems to have been unappreciated in the previous technical literature it is nevertheless effective and straightforward to implement. Indeed for the special problem in study it is perfectly suited, because a step by step interaction between the elastic and flow problems is needed. It allows also the introduction of non-linear elastic properties and time dependent conditions very easily as will be shown and compares well with performances of other approaches.
Resumo:
A Boundary Integral Equation Method (B.I.E.M.)formulation is presented. After a general situation of the method among other usual numerical ones, the possibilities of discretization are developed. As this is done only in the boundary the treatment of tridimensional problems is greatly simplified in comparison with other methods. Some results on a simple shell with holes are finally presented.
Resumo:
tWatercore distribution inside apple fruit (block or radial), and its incidence (% of tissue) were relatedto the effect of solar radiation inside the canopy as measured by a set of low-cost irradiation sensors.221 samples were harvested in two seasons from the top and the bottom of the canopy and submittedto the non-invasive and non-destructive technique of magnetic resonance imaging (MRI) in order toobtain 20 inner tomography slices from each fruit and analyze the damaged areas using an interactive3D segmentation method. The number of fruit corresponding to each type of damage and the relevantpercentage were calculated and it was found that apples from the top of the tree were mainly of the radialtype (84%) and had more watercore (approx. 5% more) than apples from the bottom (65% radial). From theimage segmentation, the Euler number, a morphometric parameter, was extracted from the segmentedimages and related to the type of watercore symptoms. Apples with block watercore were grouped inEuler numbers between −400 and 400 with a small evolution. For apples with radial development, theEuler number was highly negative: up to −1439. Significant differences were also found regarding sugarcomposition, with higher fructose and total sugar contents in apples from the upper canopy, compared tothose in the lower canopy location. In the seasons studied (2011 and 2012), significantly higher sorbitoland lower sucrose and fructose contents were found in watercore-affected tissue compared to the healthytissue of affected apples and also compared to healthy apples.
Resumo:
El objetivo de esta Tesis ha sido la consecución de simulaciones en tiempo real de vehículos industriales modelizados como sistemas multicuerpo complejos formados por sólidos rígidos. Para el desarrollo de un programa de simulación deben considerarse cuatro aspectos fundamentales: la modelización del sistema multicuerpo (tipos de coordenadas, pares ideales o impuestos mediante fuerzas), la formulación a utilizar para plantear las ecuaciones diferenciales del movimiento (coordenadas dependientes o independientes, métodos globales o topológicos, forma de imponer las ecuaciones de restricción), el método de integración numérica para resolver estas ecuaciones en el tiempo (integradores explícitos o implícitos) y finalmente los detalles de la implementación realizada (lenguaje de programación, librerías matemáticas, técnicas de paralelización). Estas cuatro etapas están interrelacionadas entre sí y todas han formado parte de este trabajo. Desde la generación de modelos de una furgoneta y de camión con semirremolque, el uso de tres formulaciones dinámicas diferentes, la integración de las ecuaciones diferenciales del movimiento mediante métodos explícitos e implícitos, hasta el uso de funciones BLAS, de técnicas de matrices sparse y la introducción de paralelización para utilizar los distintos núcleos del procesador. El trabajo presentado en esta Tesis ha sido organizado en 8 capítulos, dedicándose el primero de ellos a la Introducción. En el Capítulo 2 se presentan dos formulaciones semirrecursivas diferentes, de las cuales la primera está basada en una doble transformación de velocidades, obteniéndose las ecuaciones diferenciales del movimiento en función de las aceleraciones relativas independientes. La integración numérica de estas ecuaciones se ha realizado con el método de Runge-Kutta explícito de cuarto orden. La segunda formulación está basada en coordenadas relativas dependientes, imponiendo las restricciones por medio de penalizadores en posición y corrigiendo las velocidades y aceleraciones mediante métodos de proyección. En este segundo caso la integración de las ecuaciones del movimiento se ha llevado a cabo mediante el integrador implícito HHT (Hilber, Hughes and Taylor), perteneciente a la familia de integradores estructurales de Newmark. En el Capítulo 3 se introduce la tercera formulación utilizada en esta Tesis. En este caso las uniones entre los sólidos del sistema se ha realizado mediante uniones flexibles, lo que obliga a imponer los pares por medio de fuerzas. Este tipo de uniones impide trabajar con coordenadas relativas, por lo que la posición del sistema y el planteamiento de las ecuaciones del movimiento se ha realizado utilizando coordenadas Cartesianas y parámetros de Euler. En esta formulación global se introducen las restricciones mediante fuerzas (con un planteamiento similar al de los penalizadores) y la estabilización del proceso de integración numérica se realiza también mediante proyecciones de velocidades y aceleraciones. En el Capítulo 4 se presenta una revisión de las principales herramientas y estrategias utilizadas para aumentar la eficiencia de las implementaciones de los distintos algoritmos. En primer lugar se incluye una serie de consideraciones básicas para aumentar la eficiencia numérica de las implementaciones. A continuación se mencionan las principales características de los analizadores de códigos utilizados y también las librerías matemáticas utilizadas para resolver los problemas de álgebra lineal tanto con matrices densas como sparse. Por último se desarrolla con un cierto detalle el tema de la paralelización en los actuales procesadores de varios núcleos, describiendo para ello el patrón empleado y las características más importantes de las dos herramientas propuestas, OpenMP y las TBB de Intel. Hay que señalar que las características de los sistemas multicuerpo problemas de pequeño tamaño, frecuente uso de la recursividad, y repetición intensiva en el tiempo de los cálculos con fuerte dependencia de los resultados anteriores dificultan extraordinariamente el uso de técnicas de paralelización frente a otras áreas de la mecánica computacional, tales como por ejemplo el cálculo por elementos finitos. Basándose en los conceptos mencionados en el Capítulo 4, el Capítulo 5 está dividido en tres secciones, una para cada formulación propuesta en esta Tesis. En cada una de estas secciones se describen los detalles de cómo se han realizado las distintas implementaciones propuestas para cada algoritmo y qué herramientas se han utilizado para ello. En la primera sección se muestra el uso de librerías numéricas para matrices densas y sparse en la formulación topológica semirrecursiva basada en la doble transformación de velocidades. En la segunda se describe la utilización de paralelización mediante OpenMP y TBB en la formulación semirrecursiva con penalizadores y proyecciones. Por último, se describe el uso de técnicas de matrices sparse y paralelización en la formulación global con uniones flexibles y parámetros de Euler. El Capítulo 6 describe los resultados alcanzados mediante las formulaciones e implementaciones descritas previamente. Este capítulo comienza con una descripción de la modelización y topología de los dos vehículos estudiados. El primer modelo es un vehículo de dos ejes del tipo chasis-cabina o furgoneta, perteneciente a la gama de vehículos de carga medianos. El segundo es un vehículo de cinco ejes que responde al modelo de un camión o cabina con semirremolque, perteneciente a la categoría de vehículos industriales pesados. En este capítulo además se realiza un estudio comparativo entre las simulaciones de estos vehículos con cada una de las formulaciones utilizadas y se presentan de modo cuantitativo los efectos de las mejoras alcanzadas con las distintas estrategias propuestas en esta Tesis. Con objeto de extraer conclusiones más fácilmente y para evaluar de un modo más objetivo las mejoras introducidas en la Tesis, todos los resultados de este capítulo se han obtenido con el mismo computador, que era el top de la gama Intel Xeon en 2007, pero que hoy día está ya algo obsoleto. Por último los Capítulos 7 y 8 están dedicados a las conclusiones finales y las futuras líneas de investigación que pueden derivar del trabajo realizado en esta Tesis. Los objetivos de realizar simulaciones en tiempo real de vehículos industriales de gran complejidad han sido alcanzados con varias de las formulaciones e implementaciones desarrolladas. ABSTRACT The objective of this Dissertation has been the achievement of real time simulations of industrial vehicles modeled as complex multibody systems made up by rigid bodies. For the development of a simulation program, four main aspects must be considered: the modeling of the multibody system (types of coordinates, ideal joints or imposed by means of forces), the formulation to be used to set the differential equations of motion (dependent or independent coordinates, global or topological methods, ways to impose constraints equations), the method of numerical integration to solve these equations in time (explicit or implicit integrators) and the details of the implementation carried out (programming language, mathematical libraries, parallelization techniques). These four stages are interrelated and all of them are part of this work. They involve the generation of models for a van and a semitrailer truck, the use of three different dynamic formulations, the integration of differential equations of motion through explicit and implicit methods, the use of BLAS functions and sparse matrix techniques, and the introduction of parallelization to use the different processor cores. The work presented in this Dissertation has been structured in eight chapters, the first of them being the Introduction. In Chapter 2, two different semi-recursive formulations are shown, of which the first one is based on a double velocity transformation, thus getting the differential equations of motion as a function of the independent relative accelerations. The numerical integration of these equations has been made with the Runge-Kutta explicit method of fourth order. The second formulation is based on dependent relative coordinates, imposing the constraints by means of position penalty coefficients and correcting the velocities and accelerations by projection methods. In this second case, the integration of the motion equations has been carried out by means of the HHT implicit integrator (Hilber, Hughes and Taylor), which belongs to the Newmark structural integrators family. In Chapter 3, the third formulation used in this Dissertation is presented. In this case, the joints between the bodies of the system have been considered as flexible joints, with forces used to impose the joint conditions. This kind of union hinders to work with relative coordinates, so the position of the system bodies and the setting of the equations of motion have been carried out using Cartesian coordinates and Euler parameters. In this global formulation, constraints are introduced through forces (with a similar approach to the penalty coefficients) are presented. The stabilization of the numerical integration is carried out also by velocity and accelerations projections. In Chapter 4, a revision of the main computer tools and strategies used to increase the efficiency of the implementations of the algorithms is presented. First of all, some basic considerations to increase the numerical efficiency of the implementations are included. Then the main characteristics of the code’ analyzers used and also the mathematical libraries used to solve linear algebra problems (both with dense and sparse matrices) are mentioned. Finally, the topic of parallelization in current multicore processors is developed thoroughly. For that, the pattern used and the most important characteristics of the tools proposed, OpenMP and Intel TBB, are described. It needs to be highlighted that the characteristics of multibody systems small size problems, frequent recursion use and intensive repetition along the time of the calculation with high dependencies of the previous results complicate extraordinarily the use of parallelization techniques against other computational mechanics areas, as the finite elements computation. Based on the concepts mentioned in Chapter 4, Chapter 5 is divided into three sections, one for each formulation proposed in this Dissertation. In each one of these sections, the details of how these different proposed implementations have been made for each algorithm and which tools have been used are described. In the first section, it is shown the use of numerical libraries for dense and sparse matrices in the semirecursive topological formulation based in the double velocity transformation. In the second one, the use of parallelization by means OpenMP and TBB is depicted in the semi-recursive formulation with penalization and projections. Lastly, the use of sparse matrices and parallelization techniques is described in the global formulation with flexible joints and Euler parameters. Chapter 6 depicts the achieved results through the formulations and implementations previously described. This chapter starts with a description of the modeling and topology of the two vehicles studied. The first model is a two-axle chassis-cabin or van like vehicle, which belongs to the range of medium charge vehicles. The second one is a five-axle vehicle belonging to the truck or cabin semi-trailer model, belonging to the heavy industrial vehicles category. In this chapter, a comparative study is done between the simulations of these vehicles with each one of the formulations used and the improvements achieved are presented in a quantitative way with the different strategies proposed in this Dissertation. With the aim of deducing the conclusions more easily and to evaluate in a more objective way the improvements introduced in the Dissertation, all the results of this chapter have been obtained with the same computer, which was the top one among the Intel Xeon range in 2007, but which is rather obsolete today. Finally, Chapters 7 and 8 are dedicated to the final conclusions and the future research projects that can be derived from the work presented in this Dissertation. The objectives of doing real time simulations in high complex industrial vehicles have been achieved with the formulations and implementations developed.
Resumo:
In solid mechanics the weak formulation produces an integral equation ready for a discretization and with less restrictive requiremets than the standard field equations. Fundamentally the weak formulation is a expresion of a green formula. An alternative is to choose another green formula materializing a reciprocity relationship between the basis unknowns and an auxiliary family of functions. The degree of smoothness requiered to practice the discretization is then translated to the auxiliar functions. The subsequent discretization (constant, linear etc.)produces a set of equations on the boundary of the domain. For linear 3-D problems the BIEM appears then as a powerful alternative to FEM, because of the reduction to 2-D thanks to the features previously described.
Resumo:
As it is well known B.E.M. works efficiently in the treatment of a bread class of potential and elasticity problems. In this paper we present the results of several runs established with linear elements in plane potential theory and treating the importance of singularities and the pattern and size of elements used in the boundary discretization.
Resumo:
El Método de las Ecuaciones Integrales es una potente alternativa a los Métodos de Dominio tales como el Método de los Elementos Finitos. La idea ensencial es la combinación de la clásica relación de la reciprocidad con la filosofía de la discretización del F.E.M. La aplicación a algunos problemas reales ha demostrado que en ciertos casos el B.I.E.M. es preferiole al F.E.M. y ello es especialmente así cuando los problemas a tratar son tridimensionales y con geometría complicada. En esta ocasión se analizan comparativamente algunos aspectos matemáticos del procedimiento = Boundary integral equation method (B.I.E.M.)is a powerful alternative to the domain methods, as the well know Finite Element Method (F .E.M.) The esential idea, are the combination of the classical reciprocity re!ations with the discretization phylosophy of F.E.M. The reduction in dimension of the domain to be discretized, the easy treatment of infinite domains and the high accuracy of the results are the main adventages of B.I.E.M. Between the drawacks the nonsymetry and non sparseness of the matrices to be treated are worth remembering. Application to several real problems has shown that in certain cases B.I.E.M. is better than F.E.M. and this is specially true when tridimensional problems of complicated geometries have to be treated. Active research is in progress of its extensión to non linear and time dependent problems.
Resumo:
El objeto del presente artículo es el estudio de singularidades en problemas de Potencial mediante el uso del Método de las Ecuaciones Integrales sobre el contorno del dominio en estudio. Frente a soluciones basadas en la mejora de la discretización, análisis asintótico o introducción de funciones de forma que representen mejor la evolución de la función, una nueva hipótesis es presentada: el término responsable de la singularidad es incluido en la integral sobre el contorno de la función auxiliar. Los resultados obtenidos mejoran los de soluciones anteriores simplificando también el tiempo de cálculo = The subject of this paper is the modelling of singularities in potential problems, using the Boundary Integral Equation Method. As a logical alternative to classical methods (discretization refinement, asymptotic analysis, high order interpolatory functions) a new hypothesis is presented: the singularity responsible term is included in the interpolatory shape function. As shown by several exemples results are splendid and computer time radically shortened.
Resumo:
Se presenta en esta comunicación el tratamiento de problemas de potencial en sistemas bidimensionales, haciendo uso de la discretización de su contorno o frontera mediante elementos parabólicos tanto en geometría como en las variables de campo. Se estudian las ventajas frente al uso de elementos isoparamétricos lineales dentro de la teoría del potencial. Se presenta también un estudio sobre las zonas singulares a que dan lugar los elementos parabólicos degenerados = This paper presents a B.I.E.M. for potential theory, using in the discretization a completely isoparametric parabolic formulation; that is, the field variable, its first derivative and the boundary domain are interpolated using second orden piecewise polinomic. Several results are presented and comparison is mode with other simpler formulations. Also treated is the posibility of modelling singular behavior by moving the midside mode of selected elements.
Resumo:
In this chapter we will introduce the reader to the techniques of the Boundary Element Method applied to simple Laplacian problems. Most classical applications refer to electrostatic and magnetic fields, but the Laplacian operator also governs problems such as Saint-Venant torsion, irrotational flow, fluid flow through porous media and the added fluid mass in fluidstructure interaction problems. This short list, to which it would be possible to add many other physical problems governed by the same equation, is an indication of the importance of the numerical treatment of the Laplacian operator. Potential theory has pioneered the use of BEM since the papers of Jaswon and Hess. An interesting introduction to the topic is given by Cruse. In the last five years a renaissance of integral methods has been detected. This can be followed in the books by Jaswon and Symm and by Brebbia or Brebbia and Walker.In this chapter we shall maintain an elementary level and follow a classical scheme in order to make the content accessible to the reader who has just started to study the technique. The whole emphasis has been put on the socalled "direct" method because it is the one which appears to offer more advantages. In this section we recall the classical concepts of potential theory and establish the basic equations of the method. Later on we discuss the discretization philosophy, the implementation of different kinds of elements and the advantages of substructuring which is unavoidable when dealing with heterogeneous materials.
Resumo:
In this chapter, we are going to describe the main features as well as the basic steps of the Boundary Element Method (BEM) as applied to elastostatic problems and to compare them with other numerical procedures. As we shall show, it is easy to appreciate the adventages of the BEM, but it is also advisable to refrain from a possible unrestrained enthusiasm, as there are also limitations to its usefulness in certain types of problems. The number of these problems, nevertheless, is sufficient to justify the interest and activity that the new procedure has aroused among researchers all over the world. Briefly speaking, the most frequently used version of the BEM as applied to elastostatics works with the fundamental solution, i.e. the singular solution of the governing equations, as an influence function and tries to satisfy the boundary conditions of the problem with the aid of a discretization scheme which consists exclusively of boundary elements. As in other numerical methods, the BEM was developed thanks to the computational possibilities offered by modern computers on totally "classical" basis. That is, the theoretical grounds are based on linear elasticity theory, incorporated long ago into the curricula of most engineering schools. Its delay in gaining popularity is probably due to the enormous momentum with which Finite Element Method (FEM) penetrated the professional and academic media. Nevertheless, the fact that these methods were developed before the BEM has been beneficial because de BEM successfully uses those results and techniques studied in past decades. Some authors even consider the BEM as a particular case of the FEM while others view both methods as special cases of the general weighted residual technique. The first paper usually cited in connection with the BEM as applied to elastostatics is that of Rizzo, even though the works of Jaswon et al., Massonet and Oliveira were published at about the same time, the reason probably being the attractiveness of the "direct" approach over the "indirect" one. The work of Tizzo and the subssequent work of Cruse initiated a fruitful period with applicatons of the direct BEM to problems of elastostacs, elastodynamics, fracture, etc. The next key contribution was that of Lachat and Watson incorporating all the FEM discretization philosophy in what is sometimes called the "second BEM generation". This has no doubt, led directly to the current developments. Among the various researchers who worked on elastostatics by employing the direct BEM, one can additionallly mention Rizzo and Shippy, Cruse et al., Lachat and Watson, Alarcón et al., Brebbia el al, Howell and Doyle, Kuhn and Möhrmann and Patterson and Sheikh, and among those who used the indirect BEM, one can additionally mention Benjumea and Sikarskie, Butterfield, Banerjee et al., Niwa et al., and Altiero and Gavazza. An interesting version of the indirct method, called the Displacement Discontinuity Method (DDM) has been developed by Crounh. A comprehensive study on various special aspects of the elastostatic BEM has been done by Heisse, while review-type articles on the subject have been reported by Watson and Hartmann. At the present time, the method is well established and is being used for the solution of variety of problems in engineering mechanics. Numerous introductory and advanced books have been published as well as research-orientated ones. In this sense, it is worth noting the series of conferences promoted by Brebbia since 1978, wich have provoked a continuous research effort all over the world in relation to the BEM. In the following sections, we shall concentrate on developing the direct BEM as applied to elastostatics.
Resumo:
The aim of this Thesis is to get in deep in the use of models (conceptual and numerical), as a prediction and analytical tool for hydrogeological studies, mainly from point of view of the mining drainage. In the first place, are developed the basic concepts and the parametric variations range are developed, usually used in the modelization of underground f10w and particle transport, and also the more recommended modelization process, analysing step by step each of its sequences, developed based in the experience of the author, contrasted against the available bibliography. Following MODFLOW is described, as a modelization tool, taking into account the advantages that its more common pre/post-treatment software have (Processing MODFLOW, Mod CAD and Visual MODFLOW). In third place, are introduced the criterions and required parameters to develop a conceptual model, numerical discretization, definition of the boundary and initial conditions, as well as all those factors which affects to the system (antropic or natural), developing the creation process, data introduction, execution of morlel, convergence criterions and calibration and obtaining result, natural of Visual MODFLOUI. Next, five practical cases are analysed, in which the author has been applied MODFLOW, and the different pre/post-treatment software (Processing MODFLOW, Mod CAD and Visual MODFLOW), describing for each one, the objectives, the conceptual model defined, discretization, the parametric definition, sensibility analysis, results reached and future states prediction. In fifth place, are presented a program developed by the author which allow to improve the facilities offered by Mod CAD and Visual MODFLOW, expanding modelization possibilities and connection to other computers. Next step it is presented a series of solutions to the most typical problems which could appear during the modelization with MODFLOW. Finally, the conclusions and recommendation readied are exposed, with the purpose to help in the developing of hydrogeological models both conceptuals and numericals. RESUMEN El objetivo de esta Tesis es profundizar en el empleo de modelos (conceptuales y numéricos), como herramienta de predicción y análisis en estudios hidrogeológicos, fundamentalmente desde el punto de vista de drenaje minero. En primer lugar, se desarrollan los conceptos básicos y los rangos de variación paramétrica, habituales en la modelización de flujos subterráneos y transporte de partículas, así como el proceso de modelización más recomendado, analizando paso a paso cada una de sus secuencias, desarrollado en base a la experiencia del autor, contrastado con la bibliografía disponible. Seguidamente se describe MODFLOW como herramienta de modelización, valorando las ventajas que presentan sus software de pre/post-tratamiento más comunes (Proccesing MODFLOW, Mod CAD y Visual MODFLOW). En tercer lugar, se introducen los criterios y parámetros precisos para desarrollar un modelo conceptual, discretización numérica, definición de las condiciones de contorno e iniciales, así como todos aquellos factores que afectan al sistema (antrópicos o naturales), desarrollando el proceso de creación, introducción de datos, ejecución del modelo, criterios de convergencia y calibración, y obtención de resultados, propios de Visual MODFLOW. A continuación, se analizan cinco casos prácticos, donde el autor ha aplicado MODFLOW, así como diferentes software de pre/post-tratamiento (Proccesing MODFLOW, Mod CAD y Visual MODFLOW), describiendo para cada uno, el objetivo marcado, modelo conceptual definido, discretización, definición paramétrica, análisis de sensibilidad, resultados alcanzados y predicción de estados futuros. En quinto lugar, se presenta un programa desarrollado por el autor, que permite mejorar las prestaciones ofrecidas por MODFLOW y Visual MODFLOW, ampliando las posibilidades de modelización y conexión con otros ordenadores. Seguidamente se plantean una serie de soluciones a los problemas más típicos que pueden producirse durante la modelización con MODFLOW. Por último, se exponen las conclusiones y recomendaciones alcanzadas, con el fin de auxiliar el desarrollo del desarrollo de modelos hidrogeológicos, tanto conceptuales como numéricos.
Resumo:
We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.