41 resultados para Digital Image Analysis
Resumo:
Image analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak? digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ?373 ?m of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (?1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
Desde finales del siglo pasado, el procesamiento y análisis de imágenes digitales, se ha convertido en una poderosa herramienta para la investigación de las propiedades del suelo a múltiples resoluciones, sin embargo todavía no existen los mejores resultados en cuanto a estos trabajos. El principal problema para investigar el drenaje vertical a partir de la distribución de humedad en un perfil de vertisol es la búsqueda de métodos factibles que usen este procedimiento. El objetivo general es implementar una metodología para el procesamiento y análisis de imágenes digitales, que permita caracterizar la distribución del contenido de humedad de un perfil de vertisol. Para el estudio, doce calicatas fueron excavadas en un Mazic Pellic Vertisol, seis de ellas en mayo 13/2011 y el resto en mayo 19/2011 después de moderados eventos de lluvia. Las imágenes RGB de los perfiles fueron tomadas con una cámara Kodak™; con tamaños seleccionados de 1600 x 945 píxeles cada una fue procesada para homogeneizar el brillo y se aplicaron filtros suavizadores de diferentes tamaños de ventana, hasta obtener el óptimo. Cada imagen se dividió en sus matrices componentes, seleccionando los umbrales de cada una para ser aplicado y obtener el patrón digital binario. Este último fue analizado a través de la estimación de dos exponentes fractales: dimensión de conteo de cajas (DBC) y dimensión fractal de interfase húmedo seco (Di). Además, fueron determinados tres coeficientes prefractales a la máxima resolución: número total de cajas interceptados en el plano del patrón (A), la lagunaridad fractal (λ1) y la entropía de Shannon (S1). Para todas las imágenes obtenidas, basado en la entropía, los análisis de clúster y de histogramas, el filtro espacial de 9x9 resultó ser el de tamaño de ventana óptimo. Los umbrales fueron seleccionados a partir del carácter bimodal de los histogramas. Los patrones binarios obtenidos mostraron áreas húmedas (blancas) y secas (negras) que permitieron su análisis. Todos los parámetros obtenidos mostraron diferencias significativas entre ambos conjuntos de patrones espaciales. Mientras los exponentes fractales aportan información sobre las características de llenado del patrón de humedad, los coeficientes prefractales representan propiedades del suelo investigado. La lagunaridad fractal fue el mejor discriminador entre los patrones de humedad aparente del suelo. ABSTRACT From last century, digital image processing and analysis was converted in a powerful tool to investigate soil properties at multiple resolutions, however, the best final procedure in these works not yet exist. The main problem to study vertical drainage from the moisture distribution, on a vertisol profile, is searching for suitable methods using these procedures. Our aim was to design a digital image processing methodology and its analysis to characterize the moisture content distribution of a vertisol profile. In this research, twelve soil pits were excavated on a bare Mazic Pellic Vertisol, six of them in May 13/2011 and the rest in May 19/2011 after a moderate rainfall event. Digital RGB images were taken from each vertisol pit using a Kodak™ camera selecting a size of 1600x945 pixels. Each soil image was processed to homogenized brightness and then a spatial filter with several window sizes was applied to select the optimum one. The RGB image obtained were divided in each matrix color selecting the best thresholds for each one, maximum and minimum, to be applied and get a digital binary pattern. This one was analyzed by estimating two fractal scaling exponents: box counting dimension (DBC
Resumo:
Most of the present digital images processing methods are related with objective characterization of external properties as shape, form or colour. This information concerns objective characteristics of different bodies and is applied to extract details to perform several different tasks. But in some occasions, some other type of information is needed. This is the case when the image processing system is going to be applied to some operation related with living bodies. In this case, some other type of object information may be useful. As a matter of fact, it may give additional knowledge about its subjective properties. Some of these properties are object symmetry, parallelism between lines and the feeling of size. These types of properties concerns more to internal sensations of living beings when they are related with their environment than to the objective information obtained by artificial systems. This paper presents an elemental system able to detect some of the above-mentioned parameters. A first mathematical model to analyze these situations is reported. This theoretical model will give the possibility to implement a simple working system. The basis of this system is the use of optical logic cells, previously employed in optical computing.
Resumo:
A proposal for a model of the primary visual cortex is reported. It is structured with the basis of a simple unit cell able to perform fourteen pairs of different boolean functions corresponding to the two possible inputs. As a first step, a model of the retina is presented. Different types of responses, according to the different possibilities of interconnecting the building blocks, have been obtained. These responses constitute the basis for an initial configuration of the mammalian primary visual cortex. Some qualitative functions, as symmetry or size of an optical input, have been obtained. A proposal to extend this model to some higher functions, concludes the paper.
Resumo:
ImageJ es un programa informático de tratamiento digital de imagen orientado principalmente hacia el ámbito de las ciencias de la salud. Se trata de un software de dominio público y de código abierto desarrollado en lenguaje Java en las instituciones del National Institutes of Health de Estados Unidos. Incluye por defecto potentes herramientas para editar, procesar y analizar imágenes de casi cualquier tipo y formato. Sin embargo, su mayor virtud reside en su extensibilidad: las funcionalidades de ImageJ pueden ampliarse hasta resolver casi cualquier problema de tratamiento digital de imagen mediante macros, scripts y, especialmente, plugins programables en lenguaje Java gracias a la API que ofrece. Además, ImageJ cuenta con repositorios oficiales en los que es posible obtener de forma gratuita macros, scripts y plugins aplicables en multitud de entornos gracias a la labor de la extensa comunidad de desarrolladores de ImageJ, que los depura, mejora y amplia frecuentemente. Este documento es la memoria de un proyecto que consiste en el análisis detallado de las herramientas de tratamiento digital de imagen que ofrece ImageJ. Tiene por objetivo determinar si ImageJ, a pesar de estar más enfocado a las ciencias de la salud, puede resultar útil en el entorno de la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación de la Universidad Politécnica de Madrid, y en tal caso, resaltar las características que pudieran resultar más beneficiosas en este ámbito y servir además como guía introductoria. En las siguientes páginas se examinan una a una las herramientas de ImageJ (versión 1.48q), su funcionamiento y los mecanismos subyacentes. Se sigue el orden marcado por los menús de la interfaz de usuario: el primer capítulo abarca las herramientas destinadas a la manipulación de imágenes en general (menú Image); el segundo, las herramientas de procesado (menú Process); el tercero, las herramientas de análisis (menú Analyze); y el cuarto y último, las herramientas relacionadas con la extensibilidad de ImageJ (menú Plugins). ABSTRACT. ImageJ is a digital image processing computer program which is mainly focused at the health sciences field. It is a public domain, open source software developed in Java language at the National Institutes of Health of the United States of America. It includes powerful built-in tools to edit, process and analyze almost every type of image in nearly every format. However, its main virtue is its extensibility: ImageJ functionalities can be widened to solve nearly every situation found in digital image processing through macros, scripts and, specially, plugins programmed in Java language thanks to the ImageJ API. In addition, ImageJ has official repositories where it is possible to freely get many different macros, scripts and plugins thanks to the work carried out by the ImageJ developers community, which continuously debug, improve and widen them. This document is a report which explains a detailed analysis of all the digital image processing tools offered by ImageJ. Its final goal is to determine if ImageJ can be useful to the environment of Escuela Tecnica Superior de Ingenierfa y Sistemas de Telecomunicacion of Universidad Politecnica de Madrid, in spite of being focused at the health sciences field. In such a case, it also aims to highlight the characteristics which could be more beneficial in this field, and serve as an introductory guide too. In the following pages, all of the ImageJ tools (version 1.48q) are examined one by one, as well as their work and the underlying mechanics. The document follows the order established by the menus in ImageJ: the first chapter covers all the tools destined to manipulate images in general (menu Image); the second one covers all the processing tools (menu Process); the third one includes analyzing tools (menu Analyze); and finally, the fourth one contains all those tools related to ImageJ extensibility (menu Plugins).
Resumo:
El frente de un túnel puede colapsar si la presión aplicada sobre el es inferior a un valor limite denominado presión “critica” o “de colapso”. En este trabajo se desarrolla y presenta un mecanismo de rotura rotacional generado punto a punto para el cálculo de la presión de colapso del frente de túneles excavados en terrenos estratificados o en materiales que siguen un criterio de rotura nolineal. La solución propuesta es una solución de contorno superior en el marco del Análisis Límite y supone una generalización del mecanismo de rotura mas reciente existente en la bibliografía. La presencia de un terreno estratificado o con un criterio de rotura no-lineal implica una variabilidad espacial de las propiedades resistentes. Debido a esto, se generaliza el mecanismo desarrollado por Mollon et al. (2011b) para suelos, de tal forma que se puedan considerar valores locales del ángulo de rozamiento y de la cohesión. Además, la estratificación del terreno permite una rotura parcial del frente, por lo que se implementa esta posibilidad en el mecanismo, siendo la primera solución que emplea un mecanismo de rotura que se ajusta a la estratigrafía del terreno. Por otro lado, la presencia de un material con un criterio de rotura no-lineal exige introducir en el modelo, como variable de estudio, el estado tensional en el frente, el cual se somete al mismo proceso de optimización que las variables geométricas del mecanismo. Se emplea un modelo numérico 3D para validar las predicciones del mecanismo de Análisis Limite, demostrando que proporciona, con un esfuerzo computacional significativamente reducido, buenas predicciones de la presión critica, del tipo de rotura (global o parcial) en terrenos estratificados y de la geometría de fallo. El mecanismo validado se utiliza para realizar diferentes estudios paramétricos sobre la influencia de la estratigrafía en la presión de colapso. Igualmente, se emplea para elaborar cuadros de diseño de la presión de colapso para túneles ejecutados con tuneladora en macizos rocosos de mala calidad y para analizar la influencia en la estabilidad del frente del método constructivo. Asimismo, se lleva a cabo un estudio de fiabilidad de la estabilidad del frente de un túnel excavado en un macizo rocoso altamente fracturado. A partir de el se analiza como afectan las diferentes hipótesis acerca de los tipos de distribución y de las estructuras de correlación a los resultados de fiabilidad. Se investiga también la sensibilidad de los índices de fiabilidad a los cambios en las variables aleatorias, identificando las mas relevantes para el diseño. Por ultimo, se lleva a cabo un estudio experimental mediante un modelo de laboratorio a escala reducida. El modelo representa medio túnel, lo cual permite registrar el movimiento del material mediante una técnica de correlación de imágenes fotográficas. El ensayo se realiza con una arena seca y se controla por deformaciones mediante un pistón que simula el frente. Los resultados obtenidos se comparan con las estimaciones de la solución de Análisis Límite, obteniéndose un ajuste razonable, de acuerdo a la literatura, tanto en la geometría de rotura como en la presión de colapso. A tunnel face may collapse if the applied support pressure is lower than a limit value called the ‘critical’ or ‘collapse’ pressure. In this work, an advanced rotational failure mechanism generated ‘‘point-by-point” is developed to compute the collapse pressure for tunnel faces in layered (or stratified) grounds or in materials that follow a non-linear failure criterion. The proposed solution is an upper bound solution in the framework of limit analysis which extends the most advanced face failure mechanism in the literature. The excavation of the tunnel in a layered ground or in materials with a non-linear failure criterion may lead to a spatial variability of the strength properties. Because of this, the rotational mechanism recently proposed by Mollon et al. (2011b) for Mohr-Coulomb soils is generalized so that it can consider local values of the friction angle and of the cohesion. For layered soils, the mechanism needs to be extended to consider the possibility for partial collapse. The proposed methodology is the first solution with a partial collapse mechanism that can fit to the stratification. Similarly, the use of a nonlinear failure criterion introduces the need to introduce new parameters in the optimization problem to consider the distribution of normal stresses along the failure surface. A 3D numerical model is employed to validate the predictions of the limit analysis mechanism, demonstrating that it provides, with a significantly reduced computational effort, good predictions of critical pressure, of the type of collapse (global or partial) in layered soils, and of its geometry. The mechanism is then employed to conduct parametric studies of the influence of several geometrical and mechanical parameters on face stability of tunnels in layered soils. Similarly, the methodology has been further employed to develop simple design charts that provide the face collapse pressure of tunnels driven by TBM in low quality rock masses and to study the influence of the construction method. Finally, a reliability analysis of the stability of a tunnel face driven in a highly fractured rock mass is performed. The objective is to analyze how different assumptions about distributions types and correlation structures affect the reliability results. In addition, the sensitivity of the reliability index to changes in the random variables is studied, identifying the most relevant variables for engineering design. Finally, an experimental study is carried out using a small-scale laboratory model. The problem is modeled in half, cutting through the tunnel axis vertically, so that displacements of soil particles can be recorded by a digital image correlation technique. The tests were performed with dry sand and displacements are controlled by a piston that supports the soil. The results of the model are compared with the predictions of the Limit Analysis mechanism. A reasonable agreement, according to literature, is obtained between the shapes of the failure surfaces and between the collapse pressures observed in the model tests and computed with the analytical solution.
Resumo:
In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.
Resumo:
The colony shape of four yeast species growing on agar medium wasmeasured for 116 days by image analysis. Initially, all the colonies are circular, with regular edges. The loss of circularity can be quantitatively estimated by the eccentricity index, Ei, calculated as the ratio between their orthogonal vertical and horizontal diameters. Ei can increase from 1 (complete circularity) to a maximum of 1.17–1.30, depending on the species. One colony inhibits its neighbour only when it has reached a threshold area. Then, Ei of the inhibited colony increases proportionally to the area of the inhibitory colony. The initial distance between colonies affects those threshold values but not the proportionality, Ei/area; this inhibition affects the shape but not the total surface of the colony. The appearance of irregularities in the edges is associated, in all the species, not with age but with nutrient exhaustion. The edge irregularity can be quantified by the Fourier index, Fi, calculated by the minimum number of Fourier coefficients that are needed to describe the colony contour with 99% fitness. An ad hoc function has been developed in Matlab v. 7.0 to automate the computation of the Fourier coefficients. In young colonies, Fi has a value between 2 (circumference) and 3 (ellipse). These values are maintained in mature colonies of Debaryomyces, but can reach values up to 14 in Saccharomyces.All the species studied showed the inhibition of growth in facing colony edges, but only three species showed edge irregularities associated with substrate exhaustion. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.
Resumo:
El proyecto consta de dos partes principales y dos anexos. La primera es teórica, en ella realizamos; a modo de introducción, un estudio sobre el tratamiento digital de la imagen, desarrollando las principales técnicas de tratamiento y análisis de imágenes que pudimos estudiar durante la carrera. Una vez desgranado el análisis nos centraremos en la correlación digital de imagen, su evolución y distintas técnicas, donde nos centramos en la correlación cruzada normalizada que usamos posteriormente para la correlación de imágenes con Matlab. La segunda parte consiste en la implementación de un sencillo programa mediante Matlab en el que podremos evaluar y analizar las diferencias entre dos o más imágenes, pudiendo observar gráficamente la desviación en milímetros entre varias imágenes y su dirección con vectores. Posteriormente analizamos los resultados obtenidos y proponemos posibles mejoras para futuros proyectos de correlación de imágenes digitales. Por último, incluimos un par de anexos en los que incluimos un tutorial para automatizar acciones con Adobe Photoshop para facilitar el pretratamiento de fotografías antes de analizarlas con el script y una posible práctica de laboratorio para futuros alumnos de la escuela utilizando nuestro script de Matlab. ABSTRACT. The project involves two main parts and two annexes. The first is theoretical, it performed; by way of introduction, a study on digital image processing, developing the main treatment techniques and image analysis we were able to study along our career. Once shelled analysis we will focus on digital image correlation, evolution and different techniques, where we focus on normalized cross-correlation which we use later for the correlation of images with Matlab. The second part is the implementation of a simple program using Matlab where we can evaluate and analyze the differences between two or more images and can graphically see the deviation in millimeters between various images and their direction vectors. Then we analyze the results and propose possible improvements for future projects correlation of digital images. Finally, we have a couple of annexes in which we include a tutorial to automate actions with Adobe Photoshop to facilitate pretreatment photographs before analyzing the script and a possible lab for future school students using our Matlab script.