37 resultados para Context-aware computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent future, wireless sensor networks ({WSNs}) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of {WSNs} facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers ({DCs}). The high economical and environmental impact of the energy consumption in {DCs} requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of {WSNs}: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of {DCs}: energy-optimal workload assignment policies in heterogeneous {DCs}, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low resources in many African locations do not allow many African scientists and physicians to access the latest advances in technology. This deficiency hinders the daily life of African professionals that often cannot afford, for instance, the cost of internet fees or software licenses. The AFRICA BUILD project, funded by the European Commission and formed by four European and four African institutions, intends to provide advanced computational tools to African institutions in order to solve current technological limitations. In the context of AFRICA BUILD we have carried out, a series of experiments to test the feasibility of using Cloud Computing technologies in two different locations in Africa: Egypt and Burundi. The project aims to create a virtual platform to provide access to a wide range of biomedical informatics and learning resources to professionals and researchers in Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Access to information and continuous education represent critical factors for physicians and researchers over the world. For African professionals, this situation is even more problematic due to the frequently difficult access to technological infrastructures and basic information. Both education and information technologies (e.g., including hardware, software or networking) are expensive and unaffordable for many African professionals. Thus, the use of e-learning and an open approach to information exchange and software use have been already proposed to improve medical informatics issues in Africa. In this context, the AFRICA BUILD project, supported by the European Commission, aims to develop a virtual platform to provide access to a wide range of biomedical informatics and learning resources to professionals and researchers in Africa. A consortium of four African and four European partners work together in this initiative. In this framework, we have developed a prototype of a cloud-computing infrastructure to demonstrate, as a proof of concept, the feasibility of this approach. We have conducted the experiment in two different locations in Africa: Burundi and Egypt. As shown in this paper, technologies such as cloud computing and the use of open source medical software for a large range of case present significant challenges and opportunities for developing countries, such as many in Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an empirical evidence of user bias within a laboratory-oriented evaluation of a Spoken Dialog System. Specifically, we addressed user bias in their satisfaction judgements. We question the reliability of this data for modeling user emotion, focusing on contentment and frustration in a spoken dialog system. This bias is detected through machine learning experiments that were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. The target used was the satisfaction rating and the predictors were conversational/dialog features. Our results indicated that standard classifiers were significantly more successful in discriminating frustration and contentment and the intensities of these emotions (reflected by user satisfaction ratings) from annotator data than from user data. Indirectly, the results showed that conversational features are reliable predictors of the two abovementioned emotions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reducing the energy consumption for computation and cooling in servers is a major challenge considering the data center energy costs today. To ensure energy-efficient operation of servers in data centers, the relationship among computa- tional power, temperature, leakage, and cooling power needs to be analyzed. By means of an innovative setup that enables monitoring and controlling the computing and cooling power consumption separately on a commercial enterprise server, this paper studies temperature-leakage-energy tradeoffs, obtaining an empirical model for the leakage component. Using this model, we design a controller that continuously seeks and settles at the optimal fan speed to minimize the energy consumption for a given workload. We run a customized dynamic load-synthesis tool to stress the system. Our proposed cooling controller achieves up to 9% energy savings and 30W reduction in peak power in comparison to the default cooling control scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recientemente, el paradigma de la computación en la nube ha recibido mucho interés por parte tanto de la industria como del mundo académico. Las infraestructuras cloud públicas están posibilitando nuevos modelos de negocio y ayudando a reducir costes. Sin embargo, una compañía podría desear ubicar sus datos y servicios en sus propias instalaciones, o tener que atenerse a leyes de protección de datos. Estas circunstancias hacen a las infraestructuras cloud privadas ciertamente deseables, ya sea para complementar a las públicas o para sustituirlas por completo. Por desgracia, las carencias en materia de estándares han impedido que las soluciones para la gestión de infraestructuras privadas se hayan desarrollado adecuadamente. Además, la multitud de opciones disponibles ha creado en los clientes el miedo a depender de una tecnología concreta (technology lock-in). Una de las causas de este problema es la falta de alineación entre la investigación académica y los productos comerciales, ya que aquella está centrada en el estudio de escenarios idealizados sin correspondencia con el mundo real, mientras que éstos consisten en soluciones desarrolladas sin tener en cuenta cómo van a encajar con los estándares más comunes o sin preocuparse de hacer públicos sus resultados. Con objeto de resolver este problema, propongo un sistema de gestión modular para infraestructuras cloud privadas enfocado en tratar con las aplicaciones en lugar de centrarse únicamente en los recursos hardware. Este sistema de gestión sigue el paradigma de la computación autónoma y está diseñado en torno a un modelo de información sencillo, desarrollado para ser compatible con los estándares más comunes. Este modelo divide el entorno en dos vistas, que sirven para separar aquello que debe preocupar a cada actor involucrado del resto de información, pero al mismo tiempo permitiendo relacionar el entorno físico con las máquinas virtuales que se despliegan encima de él. En dicho modelo, las aplicaciones cloud están divididas en tres tipos genéricos (Servicios, Trabajos de Big Data y Reservas de Instancias), para que así el sistema de gestión pueda sacar partido de las características propias de cada tipo. El modelo de información está complementado por un conjunto de acciones de gestión atómicas, reversibles e independientes, que determinan las operaciones que se pueden llevar a cabo sobre el entorno y que es usado para hacer posible la escalabilidad en el entorno. También describo un motor de gestión encargado de, a partir del estado del entorno y usando el ya mencionado conjunto de acciones, la colocación de recursos. Está dividido en dos niveles: la capa de Gestores de Aplicación, encargada de tratar sólo con las aplicaciones; y la capa del Gestor de Infraestructura, responsable de los recursos físicos. Dicho motor de gestión obedece un ciclo de vida con dos fases, para así modelar mejor el comportamiento de una infraestructura real. El problema de la colocación de recursos es atacado durante una de las fases (la de consolidación) por un resolutor de programación entera, y durante la otra (la online) por un heurístico hecho ex-profeso. Varias pruebas han demostrado que este acercamiento combinado es superior a otras estrategias. Para terminar, el sistema de gestión está acoplado a arquitecturas de monitorización y de actuadores. Aquella estando encargada de recolectar información del entorno, y ésta siendo modular en su diseño y capaz de conectarse con varias tecnologías y ofrecer varios modos de acceso. ABSTRACT The cloud computing paradigm has raised in popularity within the industry and the academia. Public cloud infrastructures are enabling new business models and helping to reduce costs. However, the desire to host company’s data and services on premises, and the need to abide to data protection laws, make private cloud infrastructures desirable, either to complement or even fully substitute public oferings. Unfortunately, a lack of standardization has precluded private infrastructure management solutions to be developed to a certain level, and a myriad of diferent options have induced the fear of lock-in in customers. One of the causes of this problem is the misalignment between academic research and industry ofering, with the former focusing in studying idealized scenarios dissimilar from real-world situations, and the latter developing solutions without taking care about how they f t with common standards, or even not disseminating their results. With the aim to solve this problem I propose a modular management system for private cloud infrastructures that is focused on the applications instead of just the hardware resources. This management system follows the autonomic system paradigm, and is designed around a simple information model developed to be compatible with common standards. This model splits the environment in two views that serve to separate the concerns of the stakeholders while at the same time enabling the traceability between the physical environment and the virtual machines deployed onto it. In it, cloud applications are classifed in three broad types (Services, Big Data Jobs and Instance Reservations), in order for the management system to take advantage of each type’s features. The information model is paired with a set of atomic, reversible and independent management actions which determine the operations that can be performed over the environment and is used to realize the cloud environment’s scalability. From the environment’s state and using the aforementioned set of actions, I also describe a management engine tasked with the resource placement. It is divided in two tiers: the Application Managers layer, concerned just with applications; and the Infrastructure Manager layer, responsible of the actual physical resources. This management engine follows a lifecycle with two phases, to better model the behavior of a real infrastructure. The placement problem is tackled during one phase (consolidation) by using an integer programming solver, and during the other (online) with a custom heuristic. Tests have demonstrated that this combined approach is superior to other strategies. Finally, the management system is paired with monitoring and actuators architectures. The former able to collect the necessary information from the environment, and the later modular in design and capable of interfacing with several technologies and ofering several access interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los Centros de Datos se encuentran actualmente en cualquier sector de la economía mundial. Están compuestos por miles de servidores, dando servicio a los usuarios de forma global, las 24 horas del día y los 365 días del año. Durante los últimos años, las aplicaciones del ámbito de la e-Ciencia, como la e-Salud o las Ciudades Inteligentes han experimentado un desarrollo muy significativo. La necesidad de manejar de forma eficiente las necesidades de cómputo de aplicaciones de nueva generación, junto con la creciente demanda de recursos en aplicaciones tradicionales, han facilitado el rápido crecimiento y la proliferación de los Centros de Datos. El principal inconveniente de este aumento de capacidad ha sido el rápido y dramático incremento del consumo energético de estas infraestructuras. En 2010, la factura eléctrica de los Centros de Datos representaba el 1.3% del consumo eléctrico mundial. Sólo en el año 2012, el consumo de potencia de los Centros de Datos creció un 63%, alcanzando los 38GW. En 2013 se estimó un crecimiento de otro 17%, hasta llegar a los 43GW. Además, los Centros de Datos son responsables de más del 2% del total de emisiones de dióxido de carbono a la atmósfera. Esta tesis doctoral se enfrenta al problema energético proponiendo técnicas proactivas y reactivas conscientes de la temperatura y de la energía, que contribuyen a tener Centros de Datos más eficientes. Este trabajo desarrolla modelos de energía y utiliza el conocimiento sobre la demanda energética de la carga de trabajo a ejecutar y de los recursos de computación y refrigeración del Centro de Datos para optimizar el consumo. Además, los Centros de Datos son considerados como un elemento crucial dentro del marco de la aplicación ejecutada, optimizando no sólo el consumo del Centro de Datos sino el consumo energético global de la aplicación. Los principales componentes del consumo en los Centros de Datos son la potencia de computación utilizada por los equipos de IT, y la refrigeración necesaria para mantener los servidores dentro de un rango de temperatura de trabajo que asegure su correcto funcionamiento. Debido a la relación cúbica entre la velocidad de los ventiladores y el consumo de los mismos, las soluciones basadas en el sobre-aprovisionamiento de aire frío al servidor generalmente tienen como resultado ineficiencias energéticas. Por otro lado, temperaturas más elevadas en el procesador llevan a un consumo de fugas mayor, debido a la relación exponencial del consumo de fugas con la temperatura. Además, las características de la carga de trabajo y las políticas de asignación de recursos tienen un impacto importante en los balances entre corriente de fugas y consumo de refrigeración. La primera gran contribución de este trabajo es el desarrollo de modelos de potencia y temperatura que permiten describes estos balances entre corriente de fugas y refrigeración; así como la propuesta de estrategias para minimizar el consumo del servidor por medio de la asignación conjunta de refrigeración y carga desde una perspectiva multivariable. Cuando escalamos a nivel del Centro de Datos, observamos un comportamiento similar en términos del balance entre corrientes de fugas y refrigeración. Conforme aumenta la temperatura de la sala, mejora la eficiencia de la refrigeración. Sin embargo, este incremente de la temperatura de sala provoca un aumento en la temperatura de la CPU y, por tanto, también del consumo de fugas. Además, la dinámica de la sala tiene un comportamiento muy desigual, no equilibrado, debido a la asignación de carga y a la heterogeneidad en el equipamiento de IT. La segunda contribución de esta tesis es la propuesta de técnicas de asigación conscientes de la temperatura y heterogeneidad que permiten optimizar conjuntamente la asignación de tareas y refrigeración a los servidores. Estas estrategias necesitan estar respaldadas por modelos flexibles, que puedan trabajar en tiempo real, para describir el sistema desde un nivel de abstracción alto. Dentro del ámbito de las aplicaciones de nueva generación, las decisiones tomadas en el nivel de aplicación pueden tener un impacto dramático en el consumo energético de niveles de abstracción menores, como por ejemplo, en el Centro de Datos. Es importante considerar las relaciones entre todos los agentes computacionales implicados en el problema, de forma que puedan cooperar para conseguir el objetivo común de reducir el coste energético global del sistema. La tercera contribución de esta tesis es el desarrollo de optimizaciones energéticas para la aplicación global por medio de la evaluación de los costes de ejecutar parte del procesado necesario en otros niveles de abstracción, que van desde los nodos hasta el Centro de Datos, por medio de técnicas de balanceo de carga. Como resumen, el trabajo presentado en esta tesis lleva a cabo contribuciones en el modelado y optimización consciente del consumo por fugas y la refrigeración de servidores; el modelado de los Centros de Datos y el desarrollo de políticas de asignación conscientes de la heterogeneidad; y desarrolla mecanismos para la optimización energética de aplicaciones de nueva generación desde varios niveles de abstracción. ABSTRACT Data centers are easily found in every sector of the worldwide economy. They consist of tens of thousands of servers, serving millions of users globally and 24-7. In the last years, e-Science applications such e-Health or Smart Cities have experienced a significant development. The need to deal efficiently with the computational needs of next-generation applications together with the increasing demand for higher resources in traditional applications has facilitated the rapid proliferation and growing of data centers. A drawback to this capacity growth has been the rapid increase of the energy consumption of these facilities. In 2010, data center electricity represented 1.3% of all the electricity use in the world. In year 2012 alone, global data center power demand grew 63% to 38GW. A further rise of 17% to 43GW was estimated in 2013. Moreover, data centers are responsible for more than 2% of total carbon dioxide emissions. This PhD Thesis addresses the energy challenge by proposing proactive and reactive thermal and energy-aware optimization techniques that contribute to place data centers on a more scalable curve. This work develops energy models and uses the knowledge about the energy demand of the workload to be executed and the computational and cooling resources available at data center to optimize energy consumption. Moreover, data centers are considered as a crucial element within their application framework, optimizing not only the energy consumption of the facility, but the global energy consumption of the application. The main contributors to the energy consumption in a data center are the computing power drawn by IT equipment and the cooling power needed to keep the servers within a certain temperature range that ensures safe operation. Because of the cubic relation of fan power with fan speed, solutions based on over-provisioning cold air into the server usually lead to inefficiencies. On the other hand, higher chip temperatures lead to higher leakage power because of the exponential dependence of leakage on temperature. Moreover, workload characteristics as well as allocation policies also have an important impact on the leakage-cooling tradeoffs. The first key contribution of this work is the development of power and temperature models that accurately describe the leakage-cooling tradeoffs at the server level, and the proposal of strategies to minimize server energy via joint cooling and workload management from a multivariate perspective. When scaling to the data center level, a similar behavior in terms of leakage-temperature tradeoffs can be observed. As room temperature raises, the efficiency of data room cooling units improves. However, as we increase room temperature, CPU temperature raises and so does leakage power. Moreover, the thermal dynamics of a data room exhibit unbalanced patterns due to both the workload allocation and the heterogeneity of computing equipment. The second main contribution is the proposal of thermal- and heterogeneity-aware workload management techniques that jointly optimize the allocation of computation and cooling to servers. These strategies need to be backed up by flexible room level models, able to work on runtime, that describe the system from a high level perspective. Within the framework of next-generation applications, decisions taken at this scope can have a dramatical impact on the energy consumption of lower abstraction levels, i.e. the data center facility. It is important to consider the relationships between all the computational agents involved in the problem, so that they can cooperate to achieve the common goal of reducing energy in the overall system. The third main contribution is the energy optimization of the overall application by evaluating the energy costs of performing part of the processing in any of the different abstraction layers, from the node to the data center, via workload management and off-loading techniques. In summary, the work presented in this PhD Thesis, makes contributions on leakage and cooling aware server modeling and optimization, data center thermal modeling and heterogeneityaware data center resource allocation, and develops mechanisms for the energy optimization for next-generation applications from a multi-layer perspective.