53 resultados para Cloud-based systems
Resumo:
The runtime management of the infrastructure providing service-based systems is a complex task, up to the point where manual operation struggles to be cost effective. As the functionality is provided by a set of dynamically composed distributed services, in order to achieve a management objective multiple operations have to be applied over the distributed elements of the managed infrastructure. Moreover, the manager must cope with the highly heterogeneous characteristics and management interfaces of the runtime resources. With this in mind, this paper proposes to support the configuration and deployment of services with an automated closed control loop. The automation is enabled by the definition of a generic information model, which captures all the information relevant to the management of the services with the same abstractions, describing the runtime elements, service dependencies, and business objectives. On top of that, a technique based on satisfiability is described which automatically diagnoses the state of the managed environment and obtains the required changes for correcting it (e.g., installation, service binding, update, or configuration). The results from a set of case studies extracted from the banking domain are provided to validate the feasibility of this proposa
Resumo:
In this paper we propose the use of Discrete Cosine Transform Type-III (DCT3) for multicarrier modulation. There are two DCT3 (even and odd) and, for each of them, we derive the expressions for both prefix and suffix to be appended into each data symbol to be transmitted. Moreover, DCT3 are closely related to the corresponding inverse DCT Type-II even and odd. Furthermore, we give explicit expressions for the 1-tap per subcarrier equalizers that must be implemented at the receiver to perform the channel equalization in the frequency-domain. As a result, the proposed DCT3-based multicarrier modulator can be used as an alternative to DFT-based systems to perform Orthogonal Frequency-Division Multiplexing or Discrete Multitone Modulation
Resumo:
We address the problem of developing mechanisms for easily implementing modular extensions to modular (logic) languages. By(language) extensions we refer to different groups of syntactic definitions and translation rules that extend a language. Our use of the concept of modularity in this context is twofold. We would like these extensions to be modular, in the sense above, i.e., we should be able to develop different extensions mostly separately. At the same time, the sources and targets for the extensions are modular languages, i.e., such extensions may take as input sepárate pieces of code and also produce sepárate pieces of code. Dealing with this double requirement involves interesting challenges to ensure that modularity is not broken: first, combinations of extensions (as if they were a single extensión) must be given a precise meaning. Also, the sepárate translation of múltiple sources (as if they were a single source) must be feasible. We present a detailed description of a code expansion-based framework that proposes novel solutions for these problems. We argüe that the approach, while implemented for Ciao, can be adapted for other Prolog-based systems and languages.
Resumo:
Modularity allows the construction of complex designs from simpler, independent units that most of the time can be developed separately. In this paper we are concerned with developing mechanisms for easily implementing modular extensions to modular (logic) languages. By (language) extensions we refer to different groups of syntactic definitions and translation rules that extend a language. Our application of the concept of modularity in this context is twofold. We would like these extensions to be modular, in the above sense, i.e., we should be able to develop different extensions mostly separately. At the same time, the sources and targets for the extensions are modular languages, i.e., such extensions may take as input separate pieces of code and also produce separate pieces of code. Dealing with this double requirement involves interesting challenges to ensure that modularity is not broken: first, combinations of extensions (as if they were a single extension) must be given a precise meaning. Also, the separate translation of multiple sources (as if they were a single source) must be feasible. We present a detailed description of a code expansion-based framework that proposes novel solutions for these problems. We argue that the approach, while implemented for Ciao, can be adapted for other languages and Prolog-based systems.
Resumo:
Several activities in service oriented computing, such as automatic composition, monitoring, and adaptation, can benefit from knowing properties of a given service composition before executing them. Among these properties we will focus on those related to execution cost and resource usage, in a wide sense, as they can be linked to QoS characteristics. In order to attain more accuracy, we formulate execution costs / resource usage as functions on input data (or appropriate abstractions thereof) and show how these functions can be used to make better, more informed decisions when performing composition, adaptation, and proactive monitoring. We present an approach to, on one hand, synthesizing these functions in an automatic fashion from the definition of the different orchestrations taking part in a system and, on the other hand, to effectively using them to reduce the overall costs of non-trivial service-based systems featuring sensitivity to data and possibility of failure. We validate our approach by means of simulations of scenarios needing runtime selection of services and adaptation due to service failure. A number of rebinding strategies, including the use of cost functions, are compared.
Resumo:
The new user cold start issue represents a serious problem in recommender systems as it can lead to the loss of new users who decide to stop using the system due to the lack of accuracy in the recommenda- tions received in that first stage in which they have not yet cast a significant number of votes with which to feed the recommender system?s collaborative filtering core. For this reason it is particularly important to design new similarity metrics which provide greater precision in the results offered to users who have cast few votes. This paper presents a new similarity measure perfected using optimization based on neu- ral learning, which exceeds the best results obtained with current metrics. The metric has been tested on the Netflix and Movielens databases, obtaining important improvements in the measures of accuracy, precision and recall when applied to new user cold start situations. The paper includes the mathematical formalization describing how to obtain the main quality measures of a recommender system using leave- one-out cross validation.
Resumo:
In a previous paper, we proposed an axiomatic model for measuring self-contradiction in the framework of Atanassov fuzzy sets. This way, contradiction measures that are semicontinuous and completely semicontinuous, from both below and above, were defined. Although some examples were given, the problem of finding families of functions satisfying the different axioms remained open. The purpose of this paper is to construct some families of contradiction measures firstly using continuous t-norms and t-conorms, and secondly by means of strong negations. In both cases, we study the properties that they satisfy. These families are then classified according the different kinds of measures presented in the above paper.
Resumo:
The popularity of MapReduce programming model has increased interest in the research community for its improvement. Among the other directions, the point of fault tolerance, concretely the failure detection issue seems to be a crucial one, but that until now has not reached its satisfying level. Motivated by this, I decided to devote my main research during this period into having a prototype system architecture of MapReduce framework with a new failure detection service, containing both analytical (theoretical) and implementation part. I am confident that this work should lead the way for further contributions in detecting failures to any NoSQL App frameworks, and cloud storage systems in general.
Resumo:
Renewable energy hybrid systems and mini-grids for electrification of rural areas are known to be reliable and more cost efficient than grid extension or only-diesel based systems. However, there is still some uncertainty in some areas, for example, which is the most efficient way of coupling hybrid systems: AC, DC or AC-DC? With the use of Matlab/Simulink a mini-grid that connects a school, a small hospital and an ecotourism hostel has been modelled. This same mini grid has been coupled in the different possible ways and the system’s efficiency has been studied. In addition, while keeping the consumption constant, the generation sources and the consumption profile have been modified and the effect on the efficiency under each configuration has also been analysed. Finally different weather profiles have been introduced and, again, the effect on the efficiency of each system has been observed.
Resumo:
Current text-to-speech systems are developed using studio-recorded speech in a neutral style or based on acted emotions. However, the proliferation of media sharing sites would allow developing a new generation of speech-based systems which could cope with spontaneous and styled speech. This paper proposes an architecture to deal with realistic recordings and carries out some experiments on unsupervised speaker diarization. In order to maximize the speaker purity of the clusters while keeping a high speaker coverage, the paper evaluates the F-measure of a diarization module, achieving high scores (>85%) especially when the clusters are longer than 30 seconds, even for the more spontaneous and expressive styles (such as talk shows or sports).
Resumo:
The Internet of Things (IoT) is growing at a fast pace with new devices getting connected all the time. A new emerging group of these devices are the wearable devices, and Wireless Sensor Networks are a good way to integrate them in the IoT concept and bring new experiences to the daily life activities. In this paper we present an everyday life application involving a WSN as the base of a novel context-awareness sports scenario where physiological parameters are measured and sent to the WSN by wearable devices. Applications with several hardware components introduce the problem of heterogeneity in the network. In order to integrate different hardware platforms and to introduce a service-oriented semantic middleware solution into a single application, we propose the use of an Enterprise Service Bus (ESB) as a bridge for guaranteeing interoperability and integration of the different environments, thus introducing a semantic added value needed in the world of IoT-based systems. This approach places all the data acquired (e.g., via Internet data access) at application developers disposal, opening the system to new user applications. The user can then access the data through a wide variety of devices (smartphones, tablets, computers) and Operating Systems (Android, iOS, Windows, Linux, etc.).
Resumo:
The term "Smart Product" has become commonly used in recent years. This is because there has been an increasing interest in these kinds of products as part of the consumer goods industry, impacting everyday life and industry. Nevertheless, the term "Smart Product" is used with different meanings in different contexts and application domains. The use of the term "Smart Product" with different meanings and underlying semantics can create important misunderstandings and dissent. The aim of this paper is to analyze the different definitions of Smart Product available in the literature, and to explore and analyze their commonalities and differences, in order to provide a consensus definition that satisfies, and can therefore be used by, all parties. To embrace the identified definitions, the concept of "Smart Thing" is introduced. The methodology used was a systematic literature review. The definition is expressed as an ontology.
Resumo:
Dominance measuring methods are a new approach to deal with complex decision-making problems with imprecise information. These methods are based on the computation of pairwise dominance values and exploit the information in the dominance matrix in dirent ways to derive measures of dominance intensity and rank the alternatives under consideration. In this paper we propose a new dominance measuring method to deal with ordinal information about decision-maker preferences in both weights and component utilities. It takes advantage of the centroid of the polytope delimited by ordinal information and builds triangular fuzzy numbers whose distances to the crisp value 0 constitute the basis for the de?nition of a dominance intensity measure. Monte Carlo simulation techniques have been used to compare the performance of this method with other existing approaches.
Resumo:
La actividad de muchas empresas, y en concreto las de software, está basada en proyectos. Típicamente, estas empresas tendrán un modelo de negocio orientado a productos para un mercado abierto, o un modelo de negocio orientado a consultoría para otras empresas. La empresa LeadClic Solutions se incluye en el segundo grupo. Se trata de una consultoría especializada en una tecnología emergente, Salesforce, cuya labor consiste en el desarrollo de aplicaciones cloud en esta plataforma que satisfagan las necesidades de sus clientes, desde empresas relativamente pequeñas hasta grandes empresas internacionales. Ante esta variedad de realidades, LeadClic necesita una herramienta versátil que permita una gestión eficaz de proyectos de distinta índole, integrando al mismo tiempo gestión de clientes, planificación, control de tiempo y costes, seguimiento, y gestión de recursos humanos. En la actualidad, la empresa basa esta gestión en un gran elenco de programas especializados, desatacando hojas de cálculo, herramientas de gestión de proyectos en diversos programas locales o en la nube, correo electrónico, servicios de comunicación y desarrollos personalizados en Salesforce. El objetivo de este Trabajo Fin de Grado es el diseño, implementación y validación de una herramienta en la nube, sobre la plataforma Salesforce, que integre las soluciones a todas las necesidades de la empresa. ---ABSTRACT---Many companies’ activity, in particular software companies’, is based on projects. Typically, these companies have a product for open market - oriented business model, or a B2B consultancy business model. The company LeadClic Solutions is included in the second group. It is a small consultancy, specialized in an emergent technology, Salesforce, that develops cloud applications in that platform to satisfy its clients’ needs, from small companies to big international ones. Faced with this variety of situations, LeadClic needs a versatile tool able to cope with an effective management of projects of different types, integrating at once client management, planning, time and costs control, monitoring, and human resources management. At the moment, the company bases this management on a wide range of specialized programs, such as spreadsheets, local and cloud based project management tools, emailing, communication services and Salesforce based custom developments. This Final Degree Project seeks to design, implement and validate a cloud based tool, on the Salesforce platform, to integrate the solution to all of the company’s needs into one single application.
Resumo:
In this paper, we analyze the performance of several well-known pattern recognition and dimensionality reduction techniques when applied to mass-spectrometry data for odor biometric identification. Motivated by the successful results of previous works capturing the odor from other parts of the body, this work attempts to evaluate the feasibility of identifying people by the odor emanated from the hands. By formulating this task according to a machine learning scheme, the problem is identified with a small-sample-size supervised classification problem in which the input data is formed by mass spectrograms from the hand odor of 13 subjects captured in different sessions. The high dimensionality of the data makes it necessary to apply feature selection and extraction techniques together with a simple classifier in order to improve the generalization capabilities of the model. Our experimental results achieve recognition rates over 85% which reveals that there exists discriminatory information in the hand odor and points at body odor as a promising biometric identifier.