73 resultados para Boundary Element Method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's of the new mesh remain constant and equal to the initial FE mesh. In order to find the mesh producing the minimum of the selected objective function the steepest descent gradient technique has been applied as optimization algorithm. However this efficient technique has the drawback that demands a large computation power. Extensive application of this methodology to different 2-D elasticity problems leads to the conclusion that isometric isostatic meshes (ii-meshes) produce better results than the standard reasonably initial regular meshes used in practice. This conclusion seems to be independent on the objective function used for comparison. These ii-meshes are obtained by placing FE nodes along the isostatic lines, i.e. curves tangent at each point to the principal direction lines of the elastic problem to be solved and they should be regularly spaced in order to build regular elements. That means ii-meshes are usually obtained by iteration, i.e. with the initial FE mesh the elastic analysis is carried out. By using the obtained results of this analysis the net of isostatic lines can be drawn and in a first trial an ii-mesh can be built. This first ii-mesh can be improved, if it necessary, by analyzing again the problem and generate after the FE analysis the new and improved ii-mesh. Typically, after two first tentative ii-meshes it is sufficient to produce good FE results from the elastic analysis. Several example of this procedure are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity $Omega$ or constant angular momentum L surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. The analysis is carried out by combining asymptotic analysis and full numerical simulation by means of the boundary element method. We pay special attention to the stability/instability of equilibrium shapes and the possible formation of singularities representing a change in the topology of the fluid domain. When the evolution is at constant $Omega$, depending on its value, drops can take the form of a flat film whose thickness goes to zero in finite time or an elongated filament that extends indefinitely. When evolution takes place at constant L and axial symmetry is imposed, thin films surrounded by a toroidal rim can develop, but the film thickness does not vanish in finite time. When axial symmetry is not imposed and L is sufficiently large, drops break axial symmetry and, depending on the value of L, reach an equilibrium configuration with a 2-fold symmetry or break up into several drops with a 2- or 3-fold symmetry. The mechanism of breakup is also described

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution we simulate numerically the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity ? or constant angular momentum L, surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. In the lecture we will describe the numerical method we have used to solve the PDE system that describes the evolution of the drop (3D boundary element method). We will also present the results we have obtained, paying special attention to the stability/instability of the equilibrium shapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper resumes the results obtained applying various implementations of the direct boundary element method (BEM) to the solution of the Laplace Equation governing the potential flow problem during everyday service manoeuvres of high-speed trains. In particular the results of train passing events at three different speed combinations are presented. Some recommendations are given in order to reduce calculation times which as is demonstrated can be cut down to not exceed reasonable limits even when using nowadays office PCs. Thus the method is shown to be a very valuable tool for the design engineer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the p-adaptive version of the boundary element method as a natural extension of the homonymous finite element approach. After a brief introduction to adaptive techniques through their finite element formulation in elastostatics, the concepts are cast into the boundary element environment. Thus, the p-adaptive version of boundary integral methods is shown to be a generalization of already well known ideas. In order to show the power of these numerical procedures, the results of two practical analysis using both methods are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil-structure interaction at bridge abutments may introduce important changes in the dynamic properties of short to medium span bridges. The paper presents the results obtained, through the use of the Boundary Element Method (B.E.M.) technique in several typical situations, including semiinfinite and layered media. Both stiffness and damping properties are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When non linear physical systems of infinite extent are modelled, such as tunnels and perforations, it is necessary to simulate suitably the solution in the infinite as well as the non linearity. The finite element method (FEM) is a well known procedure for simulating the non linear behavior. However, the treatment of the infinite field with domain truncations is often questionable. On the other hand, the boundary element method (BEM) is suitable to simulate the infinite behavior without truncations. Because of this, by the combination of both methods, suitable use of the advantages of each one may be obtained. Several possibilities of FEM-BEM coupling and their performance in some practical cases are discussed in this paper. Parallelizable coupling algorithms based on domain decomposition are developed and compared with the most traditional coupling methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An actual case of an underground railway in the neighbourhood of habitation buildings has been analyzed. The study has been based on a twodimensional BEM model including a tunnel and a typical building. The soil properties were obtained using geophysical techniques. After a sensitivity study, the model has been simplyfied and validated by comparison with "in situ" measurements. Using this simplyfied model, a parametric study has been done including trenches and walls of different materials and different depths at two different distances from the tunnel. The reductions obtained with the different solutions can then be compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the analysis of a structural element of MetOP-A satellite. Given the special interest in the influence of equipment installed on structural elements, the paper studies one of the lateral faces on which the Advanced SCATterometer (ASCAT) is installed. The work is oriented towards the modal characterization of the specimen, describing the experimental set-up and the application of results to the development of a Finite Element Method (FEM) model to study the vibro-acoustic response. For the high frequency range, characterized by a high modal density, a Statistical Energy Analysis (SEA) model is considered, and the FEM model is used when modal density is low. The methodology for developing the SEA model and a compound FEM and Boundary Element Method (BEM) model to provide continuity in the medium frequency range is presented, as well as the necessary updating, characterization and coupling between models required to achieve numerical models that match experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we will introduce the reader to the techniques of the Boundary Element Method applied to simple Laplacian problems. Most classical applications refer to electrostatic and magnetic fields, but the Laplacian operator also governs problems such as Saint-Venant torsion, irrotational flow, fluid flow through porous media and the added fluid mass in fluidstructure interaction problems. This short list, to which it would be possible to add many other physical problems governed by the same equation, is an indication of the importance of the numerical treatment of the Laplacian operator. Potential theory has pioneered the use of BEM since the papers of Jaswon and Hess. An interesting introduction to the topic is given by Cruse. In the last five years a renaissance of integral methods has been detected. This can be followed in the books by Jaswon and Symm and by Brebbia or Brebbia and Walker.In this chapter we shall maintain an elementary level and follow a classical scheme in order to make the content accessible to the reader who has just started to study the technique. The whole emphasis has been put on the socalled "direct" method because it is the one which appears to offer more advantages. In this section we recall the classical concepts of potential theory and establish the basic equations of the method. Later on we discuss the discretization philosophy, the implementation of different kinds of elements and the advantages of substructuring which is unavoidable when dealing with heterogeneous materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter, we are going to describe the main features as well as the basic steps of the Boundary Element Method (BEM) as applied to elastostatic problems and to compare them with other numerical procedures. As we shall show, it is easy to appreciate the adventages of the BEM, but it is also advisable to refrain from a possible unrestrained enthusiasm, as there are also limitations to its usefulness in certain types of problems. The number of these problems, nevertheless, is sufficient to justify the interest and activity that the new procedure has aroused among researchers all over the world. Briefly speaking, the most frequently used version of the BEM as applied to elastostatics works with the fundamental solution, i.e. the singular solution of the governing equations, as an influence function and tries to satisfy the boundary conditions of the problem with the aid of a discretization scheme which consists exclusively of boundary elements. As in other numerical methods, the BEM was developed thanks to the computational possibilities offered by modern computers on totally "classical" basis. That is, the theoretical grounds are based on linear elasticity theory, incorporated long ago into the curricula of most engineering schools. Its delay in gaining popularity is probably due to the enormous momentum with which Finite Element Method (FEM) penetrated the professional and academic media. Nevertheless, the fact that these methods were developed before the BEM has been beneficial because de BEM successfully uses those results and techniques studied in past decades. Some authors even consider the BEM as a particular case of the FEM while others view both methods as special cases of the general weighted residual technique. The first paper usually cited in connection with the BEM as applied to elastostatics is that of Rizzo, even though the works of Jaswon et al., Massonet and Oliveira were published at about the same time, the reason probably being the attractiveness of the "direct" approach over the "indirect" one. The work of Tizzo and the subssequent work of Cruse initiated a fruitful period with applicatons of the direct BEM to problems of elastostacs, elastodynamics, fracture, etc. The next key contribution was that of Lachat and Watson incorporating all the FEM discretization philosophy in what is sometimes called the "second BEM generation". This has no doubt, led directly to the current developments. Among the various researchers who worked on elastostatics by employing the direct BEM, one can additionallly mention Rizzo and Shippy, Cruse et al., Lachat and Watson, Alarcón et al., Brebbia el al, Howell and Doyle, Kuhn and Möhrmann and Patterson and Sheikh, and among those who used the indirect BEM, one can additionally mention Benjumea and Sikarskie, Butterfield, Banerjee et al., Niwa et al., and Altiero and Gavazza. An interesting version of the indirct method, called the Displacement Discontinuity Method (DDM) has been developed by Crounh. A comprehensive study on various special aspects of the elastostatic BEM has been done by Heisse, while review-type articles on the subject have been reported by Watson and Hartmann. At the present time, the method is well established and is being used for the solution of variety of problems in engineering mechanics. Numerous introductory and advanced books have been published as well as research-orientated ones. In this sense, it is worth noting the series of conferences promoted by Brebbia since 1978, wich have provoked a continuous research effort all over the world in relation to the BEM. In the following sections, we shall concentrate on developing the direct BEM as applied to elastostatics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entre la impresionante floración de procedimientos de cálculo, provocada por la aplicación intensiva del ordenador, el llamado Método de los Elementos de Contorno (Boundary Element Method o Boundary Integral Equation Method) parece afianzarse como una alternativa útil al omnipresente Método de los Elementos Finitos que ya ha sido incorporado, como una herramienta de trabajo más, al cotidiano quehacer de la ingeniería. En España, tras unos intentos precursores que se señalan en el texto, la actividad más acusada en su desarrollo y mejora se ha centrado alrededor del Departamento que dirige uno de los autores. Después de la tesis doctoral de J. Domínguez en 1977 que introdujo en España la técnica del llamado "método directo", se han producido numerosas aportaciones en forma de artículos o tesis de investigación que han permitido alcanzar un nivel de conocimientos notable. En esta obrita se pretende transmitir parte de la experiencia adquirida, siquiera sea a nivel elemental y en un campo limitado de aplicación. La filosofía es semejante a la del pequeño libro de Hinton y Owen "A simple guide to finite elements" (Pineridge Press, 1980) que tanta aceptación ha tenido entre los principiantes. El libro se articula alrededor de un sólo tema, la solución del problema de Laplace, y se limitan los desarrollos matemáticos al mínimo imprescindible para el fácil seguimiento de áquel. Tras unos capítulos iniciales de motivación y centrado se desarrolla la técnica para problemas planos, tridimensionales y axisimétricos, limitando los razonamientos a los elementos más sencillos de variación constante o lineal. Finalmente, se incluye un capítulo descriptivo donde se avizoran temas que pueden provocar un futuro interés del estudioso. Para completar la información se ha añadido un apéndice en el que se recoge un pequeño programa para microordenador, con el objetivo de que se contemple la sencillez de programación para el caso plano. El programa es mejorable en muchos aspectos pero creemos que, con ello, mantiene un nivel de legibilidad adecuado para que el lector ensaye sobre él las modificaciones que se indican en los ejercicios al final del capítulo y justamente la provocación de ese aprendizaje es nuestro objetivo final.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La influencia de un fluido en las características dinámicas de estructuras se ha estudiado desde hace tiempo. Sin embargo muchos estudios se refieren a aplicaciones bajo el agua, como es el caso del sonar de un submarino por lo que el fluido circundante se considera líquido (sin efectos de compresibilidad). Más recientemente en aplicaciones acústicas y espaciales tales como antenas o paneles muy ligeros, ha sido estudiada la influencia en las características dinámicas de una estructura rodeada por un fluido de baja densidad. Por ejemplo se ha mostrado que el efecto del aire en el transmisor-reflector del Intelsat VI C-B con un diámetro de 3,2 metros y con un peso de sólo 34,7 kg disminuye la primera frecuencia en torno a un 20% con respecto a su valor en vacío. Por tanto es importante en el desarrollo de estas grandes y ligeras estructuras disponer de un método con el que estimar el efecto del fluido circundante sobre las frecuencias naturales de éstas. De esta manera se puede evitar el ensayo de la estructura en una cámara de vacío que para el caso de una gran antena o panel puede ser difícil y costoso. Se ha desarrollado un método de elementos de contorno (BEM) para la determinación del efecto del fluido en las características dinámicas de una placa circular. Una vez calculados analíticamente los modos de vibración de la placa en vacío, la matriz de masa añadida debido a la carga del fluido se determina por el método de elementos de contorno. Este método utiliza anillos circulares de manera que el número de elementos para obtener unos resultados precisos es muy bajo. Se utiliza un procedimiento de iteración para el cálculo de las frecuencias naturales del acoplamiento fluido-estructura para el caso de fluido compresible. Los resultados del método se comparan con datos experimentales y otros modelos teóricos mostrando la precisión y exactitud para distintas condiciones de contorno de la placa. Por otro lado, a veces la geometría de la placa no es circular sino casi-circular y se ha desarrollado un método de perturbaciones para determinar la influencia de un fluido incompresible en las características dinámicas de placas casi-circulares. El método se aplica a placas con forma elíptica y pequeña excentricidad. Por una parte se obtienen las frecuencias naturales y los modos de deformación de la placa vibrando en vacío. A continuación, se calculan los coeficientes adimensionales de masa virtual añadida (factores NAVMI). Se presentan los resultados de estos factores y el efecto del fluido en las frecuencias naturales. ABSTRACT The influence of the surrounding fluid on the dynamic characteristics of structures has been well known for many years. However most of these works were more concerned with underwater applications, such as the sonar of a submarine and therefore the surrounding fluid was considered a liquid (negligible compressibility effects). Recently for acoustical and spatial applications such as antennas or very light panels the influence on the dynamic characteristics of a structure surrounded by a fluid of low density has been studied. Thus it has been shown that the air effect for the Intelsat VI C-B transmit reflector with a diameter of 3,2 meters and weighting only 34,7 kg decreases the first modal frequency by 20% with respect to the value in vacuum. It is important then, in the development of these light and large structures to have a method that estimates the effect that the surrounding fluid will have on the natural frequencies of the structure. In this way it can be avoided to test the structure in a vacuum chamber which for a large antenna or panel can be difficult and expensive A BEM method for the determination of the effect of the surrounding fluid on the dynamic characteristics of a circular plate has been developed. After the modes of the plate in vacuum are calculated in an analytical form, the added mass matrix due to the fluid loading is determined by a boundary element method. This method uses circular rings so the number of elements to obtain an accurate result is very low. An iteration procedure for the computation of the natural frequencies of the couple fluid-structure system is presented for the case of the compressibility effect of air. Comparisons of the present method with various experimental data and other theories show the efficiency and accuracy of the method for any support condition of the plate. On the other hand, sometimes the geometry of the plate is not circular but almost-circular, so a perturbation method is developed to determine the influence of an incompressible fluid on the dynamic characteristics of almost-circular plates. The method is applied to plates of elliptical shape with low eccentricity. First, the natural frequencies and the mode shapes of the plate vibrating in vacuum are obtained. Next, the nondimensional added virtual mass coefficients (NAVMI factors) are calculated. Results of this factors and the effect of the fluid on the natural frequencies are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to set out the influence of the flow field around high speed trains in open field. To achieve this parametric analysis of the sound pressure inside the train was performed. Three vibroacoustic models of a characteristic train section are used to predict the noise inside the train in open field by using finite element method FEM, boundary element method (BEM) and statistical energy analysis (SEA) depending on the frequency range of analysis. The turbulent boundary layer excitation is implemented as the only airborne noise source, in order to focus on the study of the attached and detached flow in the surface of the train. The power spectral densities of the pressure fluctuation in the train surface proposed by [Cockburn and Roberson 1974, Rennison et al. 2009] are applied on the exterior surface of the structural subsystems in the vibroacoustic models. An increase in the sound pressure level up to10 dB can be appreciated due to the detachment of the flow around the train. These results highlight the importance to determine the detached regions prediction, making critical the airborne noise due to turbulent boundary layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo se aborda una cuestión central en el diseño en carga última de estructuras de hormigón armado y de fábrica: la posibilidad efectiva de que las deformaciones plásticas necesarias para verificar un estado de rotura puedan ser alcanzadas por las regiones de la estructura que deban desarrollar su capacidad última para verificar tal estado. Así, se parte de las decisiones de diseño que mediante mera estática aseguran un equilibrio de la estructura para las cargas últimas que deba resistir, pero determinando directamente el valor de las deformaciones necesarias para llegar a tal estado. Por tanto, no se acude a los teoremas de rotura sin más, sino que se formula el problema desde un punto de vista elastoplástico. Es decir, no se obvia el recorrido que la estructura deba realizar en un proceso de carga incremental monótono, de modo que las regiones no plastificadas contribuyen a coaccionar las libres deformaciones plásticas que, en la teoría de rotura, se suponen. En términos de trabajo y energía, se introduce en el balance del trabajo de las fuerzas externas y en el de la energía de deformación, aquella parte del sistema que no ha plastificado. Establecido así el balance energético como potencial del sistema es cuando la condición de estacionariedad del mismo hace determinados los campos de desplazamientos y, por tanto, el de las deformaciones plásticas también. En definitiva, se trata de un modo de verificar si la ductilidad de los diseños previstos es suficiente, y en qué medida, para verificar el estado de rotura previsto, para unas determinadas cargas impuestas. Dentro del desarrollo teórico del problema, se encuentran ciertas precisiones importantes. Entre ellas, la verificación de que el estado de rotura a que se llega de manera determinada mediante el balance energético elasto-plástico satisface las condiciones de la solución de rotura que los teoremas de carga última predicen, asegurando, por tanto, que la solución determinada -unicidad del problema elásticocoincide con el teorema de unicidad de la carga de rotura, acotando además cuál es el sistema de equilibrio y cuál es la deformada de colapso, aspectos que los teoremas de rotura no pueden asegurar, sino sólo el valor de la carga última a verificar. Otra precisión se basa en la particularidad de los casos en que el sistema presenta una superficie de rotura plana, haciendo infinitas las posibilidades de equilibrio para una misma deformada de colapso determinada, lo que está en la base de, aparentemente, poder plastificar a antojo en vigas y arcos. Desde el planteamiento anterior, se encuentra entonces que existe una condición inherente a cualquier sistema, definidas unas leyes constitutivas internas, que permite al mismo llegar al inicio del estado de rotura sin demandar deformación plástica alguna, produciéndose la plastificación simultánea de todas las regiones que hayan llegado a su solicitación de rotura. En cierto modo, se daría un colapso de apariencia frágil. En tal caso, el sistema conserva plenamente hasta el final su capacidad dúctil y tal estado actúa como representante canónico de cualquier otra solución de equilibrio que con idéntico criterio de diseño interno se prevea para tal estructura. En la medida que el diseño se acerque o aleje de la solución canónica, la demanda de ductilidad del sistema para verificar la carga última será menor o mayor. Las soluciones que se aparten en exceso de la solución canónica, no verificarán el estado de rotura previsto por falta de ductilidad: la demanda de deformación plástica de alguna región plastificada estará más allá de la capacidad de la misma, revelándose una carga de rotura por falta de ductilidad menor que la que se preveía por mero equilibrio. Para la determinación de las deformaciones plásticas de las rótulas, se ha tomado un modelo formulado mediante el Método de los Elementos de Contorno, que proporciona un campo continuo de desplazamientos -y, por ende, de deformaciones y de tensiones- incluso en presencia de fisuras en el contorno. Importante cuestión es que se formula la diferencia, nada desdeñable, de la capacidad de rotación plástica de las secciones de hormigón armado en presencia de cortante y en su ausencia. Para las rótulas de fábrica, la diferencia se establece para las condiciones de la excentricidad -asociadas al valor relativo de la compresión-, donde las diferencias entres las regiones plastificadas con esfuerzo normal relativo alto o bajo son reseñables. Por otro lado, si bien de manera un tanto secundaria, las condiciones de servicio también imponen un límite al diseño previo en carga última deseado. La plastificación lleva asociadas deformaciones considerables, sean locales como globales. Tal cosa impone que, en estado de servicio, si la plastificación de alguna región lleva asociadas fisuraciones excesivas para el ambiente del entorno, la solución sea inviable por ello. Asimismo, las deformaciones de las estructuras suponen un límite severo a las posibilidades de su diseño. Especialmente en edificación, las deformaciones activas son un factor crítico a la hora de decidirse por una u otra solución. Por tanto, al límite que se impone por razón de ductilidad, se debe añadir el que se imponga por razón de las condiciones de servicio. Del modo anterior, considerando las condiciones de ductilidad y de servicio en cada caso, se puede tasar cada decisión de diseño con la previsión de cuáles serán las consecuencias en su estado de carga última y de servicio. Es decir, conocidos los límites, podemos acotar cuáles son los diseños a priori que podrán satisfacer seguro las condiciones de ductilidad y de servicio previstas, y en qué medida. Y, en caso de no poderse satisfacer, qué correcciones debieran realizarse sobre el diseño previo para poderlas cumplir. Por último, de las consecuencias que se extraen de lo estudiado, se proponen ciertas líneas de estudio y de experimentación para poder llegar a completar o expandir de manera práctica los resultados obtenidos. ABSTRACT This work deals with a main issue for the ultimate load design in reinforced concrete and masonry structures: the actual possibility that needed yield strains to reach a ultimate state could be reached by yielded regions on the structure that should develop their ultimate capacity to fulfill such a state. Thus, some statically determined design decisions are posed as a start for prescribed ultimate loads to be counteracted, but finding out the determined value of the strains needed to reach the ultimate load state. Therefore, ultimate load theorems are not taken as they are, but a full elasto-plastic formulation point of view is used. As a result, the path the structure must develop in a monotonus increasing loading procedure is not neglected, leading to the fact that non yielded regions will restrict the supposed totally free yield strains under a pure ultimate load theory. In work and energy terms, in the overall account of external forces work and internal strain energy, those domains in the body not reaching their ultimate state are considered. Once thus established the energy balance of the system as its potential, by imposing on it the stationary condition, both displacements and yield strains appear as determined values. Consequently, what proposed is a means for verifying whether the ductility of prescribed designs is enough and the extent to which they are so, for known imposed loads. On the way for the theoretical development of the proposal, some important aspects have been found. Among these, the verification that the conditions for the ultimate state reached under the elastoplastic energy balance fulfills the conditions prescribed for the ultimate load state predicted through the ultimate load theorems, assuring, therefore, that the determinate solution -unicity of the elastic problemcoincides with the unicity ultimate load theorem, determining as well which equilibrium system and which collapse shape are linked to it, being these two last aspects unaffordable by the ultimate load theorems, that make sure only which is the value of the ultimate load leading to collapse. Another aspect is based on the particular case in which the yield surface of the system is flat -i.e. expressed under a linear expression-, turning out infinite the equilibrium possibilities for one determined collapse shape, which is the basis of, apparently, deciding at own free will the yield distribution in beams and arches. From the foresaid approach, is then found that there is an inherent condition in any system, once defined internal constitutive laws, which allows it arrive at the beginning of the ultimate state or collapse without any yield strain demand, reaching the collapse simultaneously for all regions that have come to their ultimate strength. In a certain way, it would appear to be a fragile collapse. In such a case case, the system fully keeps until the end its ductility, and such a state acts as a canonical representative of any other statically determined solution having the same internal design criteria that could be posed for the that same structure. The extent to which a design is closer to or farther from the canonical solution, the ductility demand of the system to verify the ultimate load will be higher or lower. The solutions being far in excess from the canonical solution, will not verify the ultimate state due to lack of ductility: the demand for yield strains of any yielded region will be beyond its capacity, and a shortcoming ultimate load by lack of ductility will appear, lower than the expected by mere equilibrium. For determining the yield strains of plastic hinges, a Boundary Element Method based model has been used, leading to a continuous displacement field -therefore, for strains and stresses as well- even if cracks on the boundary are present. An important aspect is that a remarkable difference is found in the rotation capacity between plastic hinges in reinforced concrete with or without shear. For masonry hinges, such difference appears when dealing with the eccentricity of axial forces -related to their relative value of compression- on the section, where differences between yield regions under high or low relative compressions are remarkable. On the other hand, although in a certain secondary manner, serviceability conditions impose limits to the previous ultimate load stated wanted too. Yield means always big strains and deformations, locally and globally. Such a thing imposes, for serviceability states, that if a yielded region is associated with too large cracking for the environmental conditions, the predicted design will be unsuitable due to this. Furthermore, displacements must be restricted under certain severe limits that restrain the possibilities for a free design. Especially in building structures, active displacements are a critical factor when chosing one or another solution. Then, to the limits due to ductility reasons, other limits dealing with serviceability conditions shoud be added. In the foresaid way, both considering ductility and serviceability conditions in every case, the results for ultimate load and serviceability to which every design decision will lead can be bounded. This means that, once the limits are known, it is possible to bound which a priori designs will fulfill for sure the prescribed ductility and serviceability conditions, and the extent to wich they will be fulfilled, And, in case they were not, which corrections must be performed in the previous design so that it will. Finally, from the consequences derived through what studied, several study and experimental fields are proposed, in order to achieve a completeness and practical expansion of the obtained results.