48 resultados para Boolean-like laws. Fuzzy implications. Fuzzy rule based systens. Fuzzy set theories
Resumo:
This document shows the design of the radiating element of the conformal adaptive antenna of multiple planar arrays GEODA-SARAS. Operating from 2.05 to 2.3 GHz in the S-band with dual circular polarization in Tx and Rx, it is possible to track and communicate with several satellites because of its adaptive beam. The antenna is based on a set of similar triangular arrays which are divided in sub-arrays of five elements called cells.
Resumo:
Nowadays, it is urgent to renovate a great number of residential buildings. The necessity of improving energy efficiency must also be considered as an opportunity to improve indoor comfort. To achieve this goal, it is essential to develop tools to be used in the decision-making process, aiming to refurbish buildings in an integrated, efficient and sustainable way. The integrated system developed is based on a set of indicators. Sustainability indicators are useful to synthesize and organize complex information. They can provide data to evaluate a process in different stages: evaluation, diagnosis, comparison and tracing. The set of proposed indicators aims to accomplish the holistic approach pursued by sustainable development. So, these indicators are divided into three groups: environmental, social and economic. However, the main innovation of the system of indicators is the social ones. The sustainable refurbishment system aims to be a user-focused one. Therefore, the starting point is the needs of the user and social indicators are developed around this. The system tackles the sustainable refurbishment of buildings beyond energy problems. It proposes incorporating users in the decision-making process involving them in the refurbishment and so, contributing to the success of the renovation. In order to achieve this target, three social indicators are used, divided into 10 sub-indicators, and a ?Questionnaire about Sustainable Refurbishment? is drawn up. This research has been carried out in the framework of ?Sustainable Refurbishment? Research and Development Project, an integrated project under the supervision of the Centro para el Desarrollo Tecnológico e Industrial (CDTI) from the Spanish Government, in which University and the Construction Industry collaborate. This research project aims to develop an integrated system for the retrofitting of existing buildings to improve their energy efficiency. Accordingly, an additional objective of the project is to improve quality of life of residents.
Resumo:
En general, la distribución de una flota de vehículos que recorre rutas fijas no se realiza completamente en base a criterios objetivos, primando otros aspectos más difícilmente cuantificables. El análisis apropiado debería tener en consideración la variabilidad existente entre las diferentes rutas dentro de una misma ciudad para así determinar qué tecnología es la que mejor se adapta a las características de cada itinerario. Este trabajo presenta una metodología para optimizar la asignación de una flota de vehículos a sus rutas, consiguiendo reducir el consumo y las emisiones contaminantes. El método propuesto está organizado según el siguiente procedimiento: - Registro de las características cinemáticas de los vehículos que recorren un conjunto representativo de rutas. - Agrupamiento de las líneas en conglomerados de líneas similares empleando un algoritmo jerárquico que optimice el índice de semejanza entre rutas obtenido mediante contraste de hipótesis de las variables representativas. - Generación de un ciclo cinemático específico para cada conglomerado. - Tipificación de variables macroscópicas que faciliten la clasificación de las restantes líneas utilizando una red neuronal entrenada con la información recopilada en las rutas medidas. - Conocimiento de las características de la flota disponible. - Disponibilidad de un modelo que estime, según la tecnología del vehículo, el consumo y las emisiones asociados a las variables cinemáticas de los ciclos. - Desarrollo de un algoritmo de reasignación de vehículos que optimice una función objetivo dependiente de las emisiones. En el proceso de optimización de la flota se plantean dos escenarios de gran trascendencia en la evaluación ambiental, consistentes en minimizar la emisión de dióxido de carbono y su impacto como gas de efecto invernadero (GEI), y alternativamente, la producción de nitróxidos, por su influencia en la lluvia ácida y en la formación de ozono troposférico en núcleos urbanos. Además, en ambos supuestos se introducen en el problema restricciones adicionales para evitar que las emisiones de las restantes sustancias superen los valores estipulados según la organización de la flota actualmente realizada por el operador. La metodología ha sido aplicada en 160 líneas de autobús de la EMT de Madrid, conociéndose los datos cinemáticos de 25 rutas. Los resultados indican que, en ambos supuestos, es factible obtener una redistribución de la flota que consiga reducir significativamente la mayoría de las sustancias contaminantes, evitando que, en contraprestación, aumente la emisión de cualquier otro contaminante. ABSTRACT In general, the distribution of a fleet of vehicles that travel fixed routes is not usually implemented on the basis of objective criteria, thus prioritizing on other features that are more difficult to quantify. The appropriate analysis should consider the existing variability amongst the different routes within the city in order to determine which technology adapts better to the peculiarities of each itinerary. This study proposes a methodology to optimize the allocation of a fleet of vehicles to the routes in order to reduce fuel consumption and pollutant emissions. The suggested method is structured in accordance with the following procedure: - Recording of the kinematic characteristics of the vehicles that travel a representative set of routes. - Grouping of the lines in clusters of similar routes by utilizing a hierarchical algorithm that optimizes the similarity index between routes, which has been previously obtained by means of hypothesis contrast based on a set of representative variables. - Construction of a specific kinematic cycle to represent each cluster of routes. - Designation of macroscopic variables that allow the classification of the remaining lines using a neural network trained with the information gathered from a sample of routes. - Identification and comprehension of the operational characteristics of the existing fleet. - Availability of a model that evaluates, in accordance with the technology of the vehicle, the fuel consumption and the emissions related with the kinematic variables of the cycles. - Development of an algorithm for the relocation of the vehicle fleet by optimizing an objective function which relies on the values of the pollutant emissions. Two scenarios having great relevance in environmental evaluation are assessed during the optimization process of the fleet, these consisting in minimizing carbon dioxide emissions due to its impact as greenhouse gas (GHG), and alternatively, the production of nitroxides for their influence on acid rain and in the formation of tropospheric ozone in urban areas. Furthermore, additional restrictions are introduced in both assumptions in order to prevent that emission levels for the remaining substances exceed the stipulated values for the actual fleet organization implemented by the system operator. The methodology has been applied in 160 bus lines of the EMT of Madrid, for which kinematic information is known for a sample consisting of 25 routes. The results show that, in both circumstances, it is feasible to obtain a redistribution of the fleet that significantly reduces the emissions for the majority of the pollutant substances, while preventing an alternative increase in the emission level of any other contaminant.
Resumo:
Este Proyecto Fin de Grado (PFG) tiene como objetivo diseñar e implementar un sistema que genere un fichero de texto que contenga la configuración básica de un encaminador. De esta manera se desea mejorar la eficiencia del personal del departamento donde se va a implantar dicho sistema, liberando a los miembros del mismo de un trabajo repetitivo que se hace varias veces al día. Hasta ahora, esta configuración la realiza cada instalador. Para ello, una vez que se ha cargado y probado la configuración en distintos equipos de manera satisfactoria, se generan un conjunto de plantillas que sirven de modelo para las siguientes configuraciones. Aunque el instalador toma estas plantillas como punto de partida, tiene que modificar manualmente todas las variables que dependen de cada configuración particular. Por tanto, aunque no ha de ejecutar todos los comandos paso a paso, sí debe hacer una revisión total de cada plantilla para generar la configuración adecuada y después cargarla en el encaminador. Para cada configuración se consultan un total de entre tres y siete plantillas. Si a esto se añade que en el departamento se configuran encaminadores de la marca Cisco y Teldat, que de cada marca se utilizan distintos modelos y que la empresa ofrece cuatro tipos de servicio, cada uno con sus particularidades, la tarea de configurar un equipo es costosa. El sistema estará constituido por un servidor web que alojará una base de datos y un programa que permite realizar operaciones de consulta sobre la misma, un sitio web sencillo que hará las funciones de interfaz de usuario y una aplicación que permite generar el fichero de texto que contiene la configuración del encaminador en base a una serie de condicionantes. La base de datos desarrollada es una representación de la utilizada en el entorno real que tiene como objetivo realizar simulaciones del funcionamiento que tendrá el sistema. Por su parte, la funcionalidad del sitio web debe ser la de ofrecer al usuario una interfaz sencilla de utilizar y de interpretar, a través de la cual se puedan realizar consultas a la base de datos así como presentar los resultados de dichas consultas de forma ordenada. La aplicación se encargará de validar los datos a partir de los que se va a generar la configuración, determinar qué plantillas se deben consultar en función a aspectos como el servicio a configurar o la marca del encaminador y finalmente generar el fichero de texto resultado. De este modo, el instalador simplemente tendrá que volcar la información de dicho fichero sobre el encaminador. El sistema se ha diseñado de manera que sea lo más flexible a cambios, puesto que la idea de los miembros del departamento es ampliar la funcionalidad de esta herramienta. ABSTRACT. This Final Degree Project is focused on the design and implementation of a system which is able to generate a text file that contains the basic configuration of a router. With this system we want to improve the efficiency of the department members where this system is going to be introduced, releasing them from repetitive work which is done several times per day. Up to now, each installer has to configure the router manually. After checking the configuration of several devices successfully, they create a set of templates which work as models. Although the installers use those templates, they have to modify the variables that depend on the specific features of each kind of configuration. Thus, even though they don´t have to execute the commands step by step, they have to do a review of each used template in order to generate the right configuration. For each configuration, three to seven templates have to be checked. In addition, if the configured routers are both Cisco and Teldat, there are several models per brand and the company offers four types of services to be installed, so the configuration becomes a hard task to do. The system is comprised of a web server in which both the database and the program responsible for doing queries are hosted, a simple web site that will be the graphic user interface, and an application focused on generating the text file which contains the router configuration based on a set of conditions. The developed database is the representation of the real one and its aim is to simulate the way the system will work. The function of the web site is to offer an easy interface whereby you can submit a query or you can see the obtained results as a data table. Furthermore, the application has to validate the data in which the text file with the router configuration is based on. Then, it has to decide which templates it is going to use according to different aspects, such as the brand of the router or the type of service we want to configure. Finally, the application generates a text file with the necessary commands. As a result of this, the user of the system only has to copy the contents of this file to the router. The system has been designed to be flexible to changes because the members of the department want to increase the utility of this tool in the future.
Resumo:
Este documento corresponde a la Tesis para optar al grado de Doctor en Arquitectura y Urbanismo en el marco del Programa de Doctorado conjunto de la Universidad Politécnica de Madrid y la Universidad de Chile. La investigación realizada es de carácter exploratorio-descriptivo con el propósito de establecer y relacionar conceptualmente las teorías y principios de la ergonomía y del diseño urbano, para proponer desde un enfoque sistémico criterios de confort en el diseño de la ciudad, que contribuyan a la calidad de vida y la vida urbana, dando a luz lineamientos para la “Ergociudad”; concepto que surge de la unión de las palabras Ergonomía y Ciudad. Al estudiar a diversos autores se concluye en la carencia de referentes de confort y de políticas basados en la relación empírica del ser humano en la ciudad que posibiliten la configuración del medio ambiente urbano a partir de ella. La ciudad se piensa y se construye desde su estructura y no desde una mirada sistémica e integrada de los factores dimensionales, ambientales y psicosociales condicionantes del confort en sus distintas escalas. La mirada respecto del desarrollo de la ciudad es físico constructiva y, por tanto, deja de lado el problema de los estresores o de la percepción de los factores de riesgo en el entorno construido. El tema central de esta tesis es proponer una estructura modélica de calidad de vida urbana denominada Ergociudad en base a los fundamentos teóricos de la Ergonomía y el Diseño Urbano y establecer el “Índice Ergourbano”, como representación de los factores ergonómicos presentes en la ciudad. En este marco, el enfoque de la ergonomía y sus prestaciones han sido trabajados en orden a facilitar mecanismos para disponer de sus procedimientos y de su modelo de análisis relacional a otras escalas. El concepto de “Ergociudad” y su propuesta de exploración desde las personas, postula una mirada sobre los problemas que enfrenta el ser humano en la ciudad considerando la dimensión de lo humano, desde perspectivas psicológicas y sociológicas para establecer y configurar la percepción de estrés y bienestar; la dimensión de lo urbano, representada por los objetos que componen el entorno (en sus distintas escalas); y, la dimensión de lo perceptual, que definiría el concepto de confort en la forma de comprender el mundo sensorial. Los resultados de la investigación confirman la hipótesis de trabajo en términos de demostrar que la percepción de disconfort en la ciudad reflejado en un índice de evaluación perceptual espacial denominado índice Ergourbano obtenido de las mediciones en situ de los factores ergonómicos del entorno. Los resultados finales de la tesis han permitido identificar variables afines en los aspectos espaciales y perceptuales. Ello mediante la exploración de las situaciones urbanas y sus conexiones para establecer el grado de adecuación del espacio urbano a las prácticas, usos y modos de las personas en la ciudad. Una vez aplicado y validado el método desarrollado se ha llegado a obtener información suficiente para aumentar el nivel de conocimiento sobre el espacio urbano con un enfoque relacional que permite entenderlo desde la experiencia de las personas que lo habitan, insistiendo en su aporte metodológico y proyectual considerando la inexistente aplicación de información que vincule la ergonomía a esta escala urbana. ABSTRACT This document corresponds to the thesis to obtain the degree of Doctor of Architecture and Urbanism in the framework of the combined doctorate program of the Technical University of Madrid and the University of Chile. The research carried out is of a descriptive–explanatory nature with the objective of establishing and conceptually relating the theories and principals of ergonomics (or human factors) and urban design. This is done in order to propose, from a systematic focus, comfort criteria in the design of cities that contribute to quality of life and urban life, giving birth to chacteristics for “Ergocity”; concepts that arise from the union of the words ergonomic and city. After studying diverse authors, one concludes the lack of references toward comfort and policies based on the empirical relation of humans in the city that allow for the configuration of the urban environment based on comfort. The city is thought out and built from its structure and not from a systematic and integrated viewpoint of the dimensional, environmental and psychosocial factors, determining factors of comfort in its distinct scales. The view regarding the development of the city is physical constructive and, therefore, leaves aside the problem of the stress factors or the perception of risk factors in the constructed environment. The central theme of this thesis is to propose a quality model of urban life entitled Ergo-city, based on the fundamental theories of the ergonomics and urban design, and to establish an “Ergourban index” as representation of the ergonomic factors present in the city. In this framework, the focus of ergonomics and its services have been used in order to facilitate mechanisms to arrange their procedures and their model of relational analysis on other scales. The concept of “Ergocity”and its offer of exploration from a people perspective, proposes a look at the problems that humans face in the city considering the nonhuman dimension, from psychological and sociological perspectives to establish and configure la perception of stress and well-being: the urban dimension, represented by the objects that the surroundings are made up of (on their distinct scales), and the perceptual dimension, which will define the concept of comfort by means of understanding the sensorial world. The results of the research confirm the working hypothesis in terms of demonstrating the perception of discomfort in the city reflected in an index of perceptual/spatial evaluation named ergo-urban obtained from in situ measurements of the ergonomic factors of the surroundings. The final results of the thesis have permitted the identification the identification of variables related to the spatial and perceptual aspects. All of this through the exploration of the urban situations and their connections in order to establish the level of adaptation of the urban space to the practices, uses and modes of the people in the city. Once applied and validated, the method of development has led to the collection of sufficient information to increase the level of knowledge of the urban space with a relational focus that allows us to understand it from the experience of the people who inhabit said space, persisting with its methodological and projective contribution considering the inexistent application of information that links the ergonomics on an urban scale.
Resumo:
Solar drying is one of the important processes used for extending the shelf life of agricultural products. Regarding consumer requirements, solar drying should be more suitable in terms of curtailing total drying time and preserving product quality. Therefore, the objective of this study was to develop a fuzzy logic-based control system, which performs a ?human-operator-like? control approach through using the previously developed low-cost model-based sensors. Fuzzy logic toolbox of MatLab and Borland C++ Builder tool were utilized to develop a required control system. An experimental solar dryer, constructed by CONA SOLAR (Austria) was used during the development of the control system. Sensirion sensors were used to characterize the drying air at different positions in the dryer, and also the smart sensor SMART-1 was applied to be able to include the rate of wood water extraction into the control system (the difference of absolute humidity of the air between the outlet and the inlet of solar dryer is considered by SMART-1 to be the extracted water). A comprehensive test over a 3 week period for different fuzzy control models has been performed, and data, obtained from these experiments, were analyzed. Findings from this study would suggest that the developed fuzzy logic-based control system is able to tackle difficulties, related to the control of solar dryer process.
Resumo:
The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
The confluence of three-dimensional (3D) virtual worlds with social networks imposes on software agents, in addition to conversational functions, the same behaviours as those common to human-driven avatars. In this paper, we explore the possibilities of the use of metabots (metaverse robots) with motion capabilities in complex virtual 3D worlds and we put forward a learning model based on the techniques used in evolutionary computation for optimizing the fuzzy controllers which will subsequently be used by metabots for moving around a virtual environment.
Resumo:
A stress-detection system is proposed based on physiological signals. Concretely, galvanic skin response (GSR) and heart rate (HR) are proposed to provide information on the state of mind of an individual, due to their nonintrusiveness and noninvasiveness. Furthermore, specific psychological experiments were designed to induce properly stress on individuals in order to acquire a database for training, validating, and testing the proposed system. Such system is based on fuzzy logic, and it described the behavior of an individual under stressing stimuli in terms of HR and GSR. The stress-detection accuracy obtained is 99.5% by acquiring HR and GSR during a period of 10 s, and what is more, rates over 90% of success are achieved by decreasing that acquisition period to 3-5 s. Finally, this paper comes up with a proposal that an accurate stress detection only requires two physiological signals, namely, HR and GSR, and the fact that the proposed stress-detection system is suitable for real-time applications.
Resumo:
Performing activity recognition using the information provided by the different sensors embedded in a smartphone face limitations due to the capabilities of those devices when the computations are carried out in the terminal. In this work a fuzzy inference module is implemented in order to decide which classifier is the most appropriate to be used at a specific moment regarding the application requirements and the device context characterized by its battery level, available memory and CPU load. The set of classifiers that is considered is composed of Decision Tables and Trees that have been trained using different number of sensors and features. In addition, some classifiers perform activity recognition regardless of the on-body device position and others rely on the previous recognition of that position to use a classifier that is trained with measurements gathered with the mobile placed on that specific position. The modules implemented show that an evaluation of the classifiers allows sorting them so the fuzzy inference module can choose periodically the one that best suits the device context and application requirements.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model.
Resumo:
Intelligent Transportation Systems (ITS) cover a broad range of methods and technologies that provide answers to many problems of transportation. Unmanned control of the steering wheel is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle to reproduce the steering of a human driver. To this end, information is recorded about the car's state while being driven by human drivers and used to obtain, via genetic algorithms, appropriate fuzzy controllers that can drive the car in the way that humans do. These controllers have satisfy two main objectives: to reproduce the human behavior, and to provide smooth actions to ensure comfortable driving. Finally, the results of automated driving on a test circuit are presented, showing both good route tracking (similar to the performance obtained by persons in the same task) and smooth driving.
Resumo:
This paper presents a vision based autonomous landing control approach for unmanned aerial vehicles (UAV). The 3D position of an unmanned helicopter is estimated based on the homographies estimated of a known landmark. The translation and altitude estimation of the helicopter against the helipad position are the only information that is used to control the longitudinal, lateral and descend speeds of the vehicle. The control system approach consists in three Fuzzy controllers to manage the speeds of each 3D axis of the aircraft s coordinate system. The 3D position estimation was proven rst, comparing it with the GPS + IMU data with very good results. The robust of the vision algorithm against occlusions was also tested. The excellent behavior of the Fuzzy control approach using the 3D position estimation based in homographies was proved in an outdoors test using a real unmanned helicopter.