33 resultados para Bidirectional Coupling
Resumo:
The performance of tandem stacks of Group III?V multijunction solar cells continues to improve rapidly, both through improved performance of the individual cells in the stack and throughi ncrease in the number of stacked cells. As the radiative efficiency of these individual cells increases, radiative coupling between the stacked cells becomes an increasingly important factor not only in cell design, but also in accurate efficiency measurement and in determining performance of cells and systems under varying spectral conditions in the field. Past modeling has concentrated on electroluminescent coupling between the cells, although photoluminescent coupling is shown to be important for cells operating near their maximum power point voltage or below or when junction defect recombination is significant. Extension of earlier models i sproposed to allow this non-negligible component of luminescent coupling to be included. Therefined model is validated by measurement of the closely related external emission from both single and double junction cells.
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
This paper discusses how to design a Radial Line Slot Antenna (RLSA) whose waveguide is filled with high loss dielectric materials. We introduce a new design for the aperture slot coupling synthesis to restrain the dielectric losses and improve the antenna gain. Based on a newly defined slot coupling, a number of RLSAs with different sizes and loss factors are analyzed and their performances are predicted. Theoretical calculations suggest that the gain is sensitive to the material losses in the radial lines. The gain enhancement by using the new coupling formula is notable for larger antenna size and higher loss factor of the dielectric material. Three prototype RLSAs are designed and fabricated at 60GHz following different slot coupling syntheses, and their measured performances consolidate our theory.