50 resultados para Autonomous industrial vehicles
Resumo:
Autonomous aerial refueling is a key enabling technology for both manned and unmanned aircraft where extended flight duration or range are required. The results presented within this paper offer one potential vision-based sensing solution, together with a unique test environment. A hierarchical visual tracking algorithm based on direct methods is proposed and developed for the purposes of tracking a drogue during the capture stage of autonomous aerial refueling, and of estimating its 3D position. Intended to be applied in real time to a video stream from a single monocular camera mounted on the receiver aircraft, the algorithm is shown to be highly robust, and capable of tracking large, rapid drogue motions within the frame of reference. The proposed strategy has been tested using a complex robotic testbed and with actual flight hardware consisting of a full size probe and drogue. Results show that the vision tracking algorithm can detect and track the drogue at real-time frame rates of more than thirty frames per second, obtaining a robust position estimation even with strong motions and multiple occlusions of the drogue.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
In this paper an on line self-tuned PID controller is proposed for the control of a car whose goal is to follow another one, at distances and speeds typical in urban traffic. The bestknown tuning mechanism is perhaps the MIT rule, due to its ease of implementation. However, as it is well known, this method does not guarantee the stability of the system, providing good results only for constant or slowly varying reference signals and in the absence of noise, which are unrealistic conditions. When the reference input varies with an appreciable rate or in presence of noise, eventually it could result in system instability. In this paper an alternative method is proposed that significantly improves the robustness of the system for varying inputs or in the presence of noise, as demonstrated by simulation.
Resumo:
A sensitivity analysis has been performed to assess the influence of the inertial properties of railway vehicles on their dynamic behaviour. To do this, 216 dynamic simulations were performed modifying, one at a time, the masses, moments of inertia and heights of the centre of gravity of the carbody, the bogie and the wheelset. Three values were assigned to each parameter, corresponding to the percentiles 10, 50 and 90 of a data set stored in a database of railway vehicles. After processing the results of these simulations, the analyzed parameters were sorted by increasing influence. It was also found which of these parameters could be estimated with a lesser degree of accuracy for future simulations without appreciably affecting the simulation results. In general terms, it was concluded that the most sensitive inertial properties are the mass and the vertical moment of inertia, and the least sensitive ones the longitudinal and lateral moments of inertia.
Resumo:
Maximizing energy autonomy is a consistent challenge when deploying mobile robots in ionizing radiation or other hazardous environments. Having a reliable robot system is essential for successful execution of missions and to avoid manual recovery of the robots in environments that are harmful to human beings. For deployment of robots missions at short notice, the ability to know beforehand the energy required for performing the task is essential. This paper presents a on-line method for predicting energy requirements based on the pre-determined power models for a mobile robot. A small mobile robot, Khepera III is used for the experimental study and the results are promising with high prediction accuracy. The applications of the energy prediction models in energy optimization and simulations are also discussed along with examples of significant energy savings.
Resumo:
The AUTOPIA program has been working on the development of intelligent autonomous vehicles for the last 10 years. Its latest advances have focused on the development of cooperative manœuvres based on communications involving several vehicles. However, so far, these manœuvres have been tested only on private tracks that emulate urban environments. The first experiments with autonomous vehicles on real highways, in the framework of the grand cooperative driving challenge (GCDC) where several vehicles had to cooperate in order to perform cooperative adaptive cruise control (CACC), are described. In this context, the main challenge was to translate, through fuzzy controllers, human driver experience to these scenarios. This communication describes the experiences deriving from this competition, specifically that concerning the controller and the system implemented in a Citröen C3.
Resumo:
An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.
Resumo:
This research on odometry based GPS-denied navigation on multirotor Unmanned Aerial Vehicles is focused among the interactions between the odometry sensors and the navigation controller. More precisely, we present a controller architecture that allows to specify a speed specified flight envelope where the quality of the odometry measurements is guaranteed. The controller utilizes a simple point mass kinematic model, described by a set of configurable parameters, to generate a complying speed plan. For experimental testing, we have used down-facing camera optical-flow as odometry measurement. This work is a continuation of prior research to outdoors environments using an AR Drone 2.0 vehicle, as it provides reliable optical flow on a wide range of flying conditions and floor textures. Our experiments show that the architecture is realiable for outdoors flight on altitudes lower than 9 m. A prior version of our code was utilized to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012. The code will be released as an open-source ROS stack hosted on GitHub.
Resumo:
An important part of human intelligence is the ability to use language. Humans learn how to use language in a society of language users, which is probably the most effective way to learn a language from the ground up. Principles that might allow an artificial agents to learn language this way are not known at present. Here we present a framework which begins to address this challenge. Our auto-catalytic, endogenous, reflective architecture (AERA) supports the creation of agents that can learn natural language by observation. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime mock television interview, using gesture and situated language. Results show that S1 can learn multimodal complex language and multimodal communicative acts, using a vocabulary of 100 words with numerous sentence formats, by observing unscripted interaction between the humans, with no grammar being provided to it a priori, and only high-level information about the format of the human interaction in the form of high-level goals of the interviewer and interviewee and a small ontology. The agent learns both the pragmatics, semantics, and syntax of complex sentences spoken by the human subjects on the topic of recycling of objects such as aluminum cans, glass bottles, plastic, and wood, as well as use of manual deictic reference and anaphora.
Resumo:
Aircraft tracking plays a key and important role in the Sense-and-Avoid system of Unmanned Aerial Vehicles (UAVs). This paper presents a novel robust visual tracking algorithm for UAVs in the midair to track an arbitrary aircraft at real-time frame rates, together with a unique evaluation system. This visual algorithm mainly consists of adaptive discriminative visual tracking method, Multiple-Instance (MI) learning approach, Multiple-Classifier (MC) voting mechanism and Multiple-Resolution (MR) representation strategy, that is called Adaptive M3 tracker, i.e. AM3. In this tracker, the importance of test sample has been integrated to improve the tracking stability, accuracy and real-time performances. The experimental results show that this algorithm is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant surrounding illumination, partial aircraft occlusion, blur motion, rapid pose variation and onboard mechanical vibration, low computation capacity and delayed information communication between UAVs and Ground Station (GS). To our best knowledge, this is the first work to present this tracker for solving online learning and tracking freewill aircraft/intruder in the UAVs.
Resumo:
In this paper we tackle the problem of landing a helicopter autonomously on a ship deck, using as the main sensor, an on-board colour camera. To create a test-bed, we first adequately simulate the movement of a ship landing platform on the Sea, for different Sea States, for different ships, randomly and realistically enough. We use a commercial parallel robot to get this movement. Once we had this, we developed an accurate and robust computer vision system to measure the pose of the helipad with respect to the on-board camera. To deal with the noise and the possible fails of the computer vision, a state estimator was created. With all of this, we are now able to develop and test a controller that closes the loop and finish the autonomous landing task.
Resumo:
This paper presents a novel robust visual tracking framework, based on discriminative method, for Unmanned Aerial Vehicles (UAVs) to track an arbitrary 2D/3D target at real-time frame rates, that is called the Adaptive Multi-Classifier Multi-Resolution (AMCMR) framework. In this framework, adaptive Multiple Classifiers (MC) are updated in the (k-1)th frame-based Multiple Resolutions (MR) structure with compressed positive and negative samples, and then applied them in the kth frame-based Multiple Resolutions (MR) structure to detect the current target. The sample importance has been integrated into this framework to improve the tracking stability and accuracy. The performance of this framework was evaluated with the Ground Truth (GT) in different types of public image databases and real flight-based aerial image datasets firstly, then the framework has been applied in the UAV to inspect the Offshore Floating Platform (OFP). The evaluation and application results show that this framework is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant illumination, partial/full target occlusion, blur motion, rapid pose variation and onboard mechanical vibration, among others. To our best knowledge, this is the first work to present this framework for solving the online learning and tracking freewill 2D/3D target problems, and applied it in the UAVs.
Resumo:
This paper presents an adaptation of the Cross-Entropy (CE) method to optimize fuzzy logic controllers. The CE is a recently developed optimization method based on a general Monte-Carlo approach to combinatorial and continuous multi-extremal optimization and importance sampling. This work shows the application of this optimization method to optimize the inputs gains, the location and size of the different membership functions' sets of each variable, as well as the weight of each rule from the rule's base of a fuzzy logic controller (FLC). The control system approach presented in this work was designed to command the orientation of an unmanned aerial vehicle (UAV) to modify its trajectory for avoiding collisions. An onboard looking forward camera was used to sense the environment of the UAV. The information extracted by the image processing algorithm is the only input of the fuzzy control approach to avoid the collision with a predefined object. Real tests with a quadrotor have been done to corroborate the improved behavior of the optimized controllers at different stages of the optimization process.
Resumo:
En esta tesis se presenta el desarrollo de un esquema de cooperación entre vehículos terrestres (UGV) y aéreos (UAV) no tripulados, que sirve de base para conformar dos flotas de robots autónomos (denominadas FRACTAL y RoMA). Con el fin de comprobar, en diferentes escenarios y con diferente tareas, la validez de las estrategias de coordinación y cooperación propuestas en la tesis se utilizan los robots de la flota FRACTAL, que sirven como plataforma de prueba para tareas como el uso de vehículos aéreos y terrestres para apoyar labores de búsqueda y rescate en zonas de emergencia y la cooperación de una flota de robots para labores agrícolas. Se demuestra además, que el uso de la técnica de control no lineal conocida como Control por Modos Deslizantes puede ser aplicada no solo para conseguir la navegación autónoma individual de un robot aéreo o terrestre, sino también en tareas que requieren la navegación coordinada y sin colisiones de varios robots en un ambiente compartido. Para esto, se conceptualiza teóricamente el uso de la técnica de Control por Modos Deslizantes como estrategia de coordinación entre robots, extendiendo su aplicación a robots no-holonómicos en R2 y a robots aéreos en el espacio tridimensional. Después de dicha contextualización teórica, se analizan las condiciones necesarias para determinar la estabilidad del sistema multi-robot controlado y, finalmente, se comprueban las características de estabilidad y robustez ofrecidas por esta técnica de control. Tales comprobaciones se hacen simulando la navegación segura y eficiente de un grupo de UGVs para la detección de posibles riesgos ambientales, aprovechando la información aportada por un UAV. Para estas simulaciones se utilizan los modelos matemáticos de robots de la flota RoMA. Estas tareas coordinadas entre los robots se hacen posibles gracias a la efectividad, estabilidad y robustez de las estrategias de control que se desarrollan como núcleo fundamental de este trabajo de investigación. ABSTRACT This thesis presents the development of a cooperation scheme between unmanned ground (UGV) and aerial (UAV) vehicles. This scheme is the basis for forming two fleets of autonomous robots (called FRACTAL and RoMA). In order to assess, in different settings and on different tasks, the validity of the coordination and cooperation strategies proposed in the thesis, the FRACTAL fleet robots serves as a test bed for tasks like using coordinated aerial and ground vehicles to support search and rescue work in emergency scenarios or cooperation of a fleet of robots for agriculture. It is also shown that using the technique of nonlinear control known as Sliding Modes Control (SMC) can be applied not only for individual autonomous navigation of an aircraft or land robot, but also in tasks requiring the coordinated navigation of several robots, without collisions, in a shared environment. To this purpose, a strategy of coordination between robots using Sliding Mode Control technique is theoretically conceptualized, extending its application to non-holonomic robots in R2 and aerial robots in three-dimensional space. After this theoretical contextualization, the stability conditions of multi-robot system are analyzed, and finally, the stability and robustness characteristics are validated. Such validations are made with simulated experiments about the safe and efficient navigation of a group of UGV for the detection of possible environmental hazards, taking advantage of the information provided by a UAV. This simulations are made using mathematical models of RoMA fleet robots. These coordinated tasks of robots fleet are made possible thanks to the effectiveness, stability and robustness of the control strategies developed as core of this research.
Resumo:
Esta tesis doctoral se enmarca dentro del campo de los sistemas embebidos reconfigurables, redes de sensores inalámbricas para aplicaciones de altas prestaciones, y computación distribuida. El documento se centra en el estudio de alternativas de procesamiento para sistemas embebidos autónomos distribuidos de altas prestaciones (por sus siglas en inglés, High-Performance Autonomous Distributed Systems (HPADS)), así como su evolución hacia el procesamiento de alta resolución. El estudio se ha llevado a cabo tanto a nivel de plataforma como a nivel de las arquitecturas de procesamiento dentro de la plataforma con el objetivo de optimizar aspectos tan relevantes como la eficiencia energética, la capacidad de cómputo y la tolerancia a fallos del sistema. Los HPADS son sistemas realimentados, normalmente formados por elementos distribuidos conectados o no en red, con cierta capacidad de adaptación, y con inteligencia suficiente para llevar a cabo labores de prognosis y/o autoevaluación. Esta clase de sistemas suele formar parte de sistemas más complejos llamados sistemas ciber-físicos (por sus siglas en inglés, Cyber-Physical Systems (CPSs)). Los CPSs cubren un espectro enorme de aplicaciones, yendo desde aplicaciones médicas, fabricación, o aplicaciones aeroespaciales, entre otras muchas. Para el diseño de este tipo de sistemas, aspectos tales como la confiabilidad, la definición de modelos de computación, o el uso de metodologías y/o herramientas que faciliten el incremento de la escalabilidad y de la gestión de la complejidad, son fundamentales. La primera parte de esta tesis doctoral se centra en el estudio de aquellas plataformas existentes en el estado del arte que por sus características pueden ser aplicables en el campo de los CPSs, así como en la propuesta de un nuevo diseño de plataforma de altas prestaciones que se ajuste mejor a los nuevos y más exigentes requisitos de las nuevas aplicaciones. Esta primera parte incluye descripción, implementación y validación de la plataforma propuesta, así como conclusiones sobre su usabilidad y sus limitaciones. Los principales objetivos para el diseño de la plataforma propuesta se enumeran a continuación: • Estudiar la viabilidad del uso de una FPGA basada en RAM como principal procesador de la plataforma en cuanto a consumo energético y capacidad de cómputo. • Propuesta de técnicas de gestión del consumo de energía en cada etapa del perfil de trabajo de la plataforma. •Propuestas para la inclusión de reconfiguración dinámica y parcial de la FPGA (por sus siglas en inglés, Dynamic Partial Reconfiguration (DPR)) de forma que sea posible cambiar ciertas partes del sistema en tiempo de ejecución y sin necesidad de interrumpir al resto de las partes. Evaluar su aplicabilidad en el caso de HPADS. Las nuevas aplicaciones y nuevos escenarios a los que se enfrentan los CPSs, imponen nuevos requisitos en cuanto al ancho de banda necesario para el procesamiento de los datos, así como en la adquisición y comunicación de los mismos, además de un claro incremento en la complejidad de los algoritmos empleados. Para poder cumplir con estos nuevos requisitos, las plataformas están migrando desde sistemas tradicionales uni-procesador de 8 bits, a sistemas híbridos hardware-software que incluyen varios procesadores, o varios procesadores y lógica programable. Entre estas nuevas arquitecturas, las FPGAs y los sistemas en chip (por sus siglas en inglés, System on Chip (SoC)) que incluyen procesadores embebidos y lógica programable, proporcionan soluciones con muy buenos resultados en cuanto a consumo energético, precio, capacidad de cómputo y flexibilidad. Estos buenos resultados son aún mejores cuando las aplicaciones tienen altos requisitos de cómputo y cuando las condiciones de trabajo son muy susceptibles de cambiar en tiempo real. La plataforma propuesta en esta tesis doctoral se ha denominado HiReCookie. La arquitectura incluye una FPGA basada en RAM como único procesador, así como un diseño compatible con la plataforma para redes de sensores inalámbricas desarrollada en el Centro de Electrónica Industrial de la Universidad Politécnica de Madrid (CEI-UPM) conocida como Cookies. Esta FPGA, modelo Spartan-6 LX150, era, en el momento de inicio de este trabajo, la mejor opción en cuanto a consumo y cantidad de recursos integrados, cuando además, permite el uso de reconfiguración dinámica y parcial. Es importante resaltar que aunque los valores de consumo son los mínimos para esta familia de componentes, la potencia instantánea consumida sigue siendo muy alta para aquellos sistemas que han de trabajar distribuidos, de forma autónoma, y en la mayoría de los casos alimentados por baterías. Por esta razón, es necesario incluir en el diseño estrategias de ahorro energético para incrementar la usabilidad y el tiempo de vida de la plataforma. La primera estrategia implementada consiste en dividir la plataforma en distintas islas de alimentación de forma que sólo aquellos elementos que sean estrictamente necesarios permanecerán alimentados, cuando el resto puede estar completamente apagado. De esta forma es posible combinar distintos modos de operación y así optimizar enormemente el consumo de energía. El hecho de apagar la FPGA para ahora energía durante los periodos de inactividad, supone la pérdida de la configuración, puesto que la memoria de configuración es una memoria volátil. Para reducir el impacto en el consumo y en el tiempo que supone la reconfiguración total de la plataforma una vez encendida, en este trabajo, se incluye una técnica para la compresión del archivo de configuración de la FPGA, de forma que se consiga una reducción del tiempo de configuración y por ende de la energía consumida. Aunque varios de los requisitos de diseño pueden satisfacerse con el diseño de la plataforma HiReCookie, es necesario seguir optimizando diversos parámetros tales como el consumo energético, la tolerancia a fallos y la capacidad de procesamiento. Esto sólo es posible explotando todas las posibilidades ofrecidas por la arquitectura de procesamiento en la FPGA. Por lo tanto, la segunda parte de esta tesis doctoral está centrada en el diseño de una arquitectura reconfigurable denominada ARTICo3 (Arquitectura Reconfigurable para el Tratamiento Inteligente de Cómputo, Confiabilidad y Consumo de energía) para la mejora de estos parámetros por medio de un uso dinámico de recursos. ARTICo3 es una arquitectura de procesamiento para FPGAs basadas en RAM, con comunicación tipo bus, preparada para dar soporte para la gestión dinámica de los recursos internos de la FPGA en tiempo de ejecución gracias a la inclusión de reconfiguración dinámica y parcial. Gracias a esta capacidad de reconfiguración parcial, es posible adaptar los niveles de capacidad de procesamiento, energía consumida o tolerancia a fallos para responder a las demandas de la aplicación, entorno, o métricas internas del dispositivo mediante la adaptación del número de recursos asignados para cada tarea. Durante esta segunda parte de la tesis se detallan el diseño de la arquitectura, su implementación en la plataforma HiReCookie, así como en otra familia de FPGAs, y su validación por medio de diferentes pruebas y demostraciones. Los principales objetivos que se plantean la arquitectura son los siguientes: • Proponer una metodología basada en un enfoque multi-hilo, como las propuestas por CUDA (por sus siglas en inglés, Compute Unified Device Architecture) u Open CL, en la cual distintos kernels, o unidades de ejecución, se ejecuten en un numero variable de aceleradores hardware sin necesidad de cambios en el código de aplicación. • Proponer un diseño y proporcionar una arquitectura en la que las condiciones de trabajo cambien de forma dinámica dependiendo bien de parámetros externos o bien de parámetros que indiquen el estado de la plataforma. Estos cambios en el punto de trabajo de la arquitectura serán posibles gracias a la reconfiguración dinámica y parcial de aceleradores hardware en tiempo real. • Explotar las posibilidades de procesamiento concurrente, incluso en una arquitectura basada en bus, por medio de la optimización de las transacciones en ráfaga de datos hacia los aceleradores. •Aprovechar las ventajas ofrecidas por la aceleración lograda por módulos puramente hardware para conseguir una mejor eficiencia energética. • Ser capaces de cambiar los niveles de redundancia de hardware de forma dinámica según las necesidades del sistema en tiempo real y sin cambios para el código de aplicación. • Proponer una capa de abstracción entre el código de aplicación y el uso dinámico de los recursos de la FPGA. El diseño en FPGAs permite la utilización de módulos hardware específicamente creados para una aplicación concreta. De esta forma es posible obtener rendimientos mucho mayores que en el caso de las arquitecturas de propósito general. Además, algunas FPGAs permiten la reconfiguración dinámica y parcial de ciertas partes de su lógica en tiempo de ejecución, lo cual dota al diseño de una gran flexibilidad. Los fabricantes de FPGAs ofrecen arquitecturas predefinidas con la posibilidad de añadir bloques prediseñados y poder formar sistemas en chip de una forma más o menos directa. Sin embargo, la forma en la que estos módulos hardware están organizados dentro de la arquitectura interna ya sea estática o dinámicamente, o la forma en la que la información se intercambia entre ellos, influye enormemente en la capacidad de cómputo y eficiencia energética del sistema. De la misma forma, la capacidad de cargar módulos hardware bajo demanda, permite añadir bloques redundantes que permitan aumentar el nivel de tolerancia a fallos de los sistemas. Sin embargo, la complejidad ligada al diseño de bloques hardware dedicados no debe ser subestimada. Es necesario tener en cuenta que el diseño de un bloque hardware no es sólo su propio diseño, sino también el diseño de sus interfaces, y en algunos casos de los drivers software para su manejo. Además, al añadir más bloques, el espacio de diseño se hace más complejo, y su programación más difícil. Aunque la mayoría de los fabricantes ofrecen interfaces predefinidas, IPs (por sus siglas en inglés, Intelectual Property) comerciales y plantillas para ayudar al diseño de los sistemas, para ser capaces de explotar las posibilidades reales del sistema, es necesario construir arquitecturas sobre las ya establecidas para facilitar el uso del paralelismo, la redundancia, y proporcionar un entorno que soporte la gestión dinámica de los recursos. Para proporcionar este tipo de soporte, ARTICo3 trabaja con un espacio de soluciones formado por tres ejes fundamentales: computación, consumo energético y confiabilidad. De esta forma, cada punto de trabajo se obtiene como una solución de compromiso entre estos tres parámetros. Mediante el uso de la reconfiguración dinámica y parcial y una mejora en la transmisión de los datos entre la memoria principal y los aceleradores, es posible dedicar un número variable de recursos en el tiempo para cada tarea, lo que hace que los recursos internos de la FPGA sean virtualmente ilimitados. Este variación en el tiempo del número de recursos por tarea se puede usar bien para incrementar el nivel de paralelismo, y por ende de aceleración, o bien para aumentar la redundancia, y por lo tanto el nivel de tolerancia a fallos. Al mismo tiempo, usar un numero óptimo de recursos para una tarea mejora el consumo energético ya que bien es posible disminuir la potencia instantánea consumida, o bien el tiempo de procesamiento. Con el objetivo de mantener los niveles de complejidad dentro de unos límites lógicos, es importante que los cambios realizados en el hardware sean totalmente transparentes para el código de aplicación. A este respecto, se incluyen distintos niveles de transparencia: • Transparencia a la escalabilidad: los recursos usados por una misma tarea pueden ser modificados sin que el código de aplicación sufra ningún cambio. • Transparencia al rendimiento: el sistema aumentara su rendimiento cuando la carga de trabajo aumente, sin cambios en el código de aplicación. • Transparencia a la replicación: es posible usar múltiples instancias de un mismo módulo bien para añadir redundancia o bien para incrementar la capacidad de procesamiento. Todo ello sin que el código de aplicación cambie. • Transparencia a la posición: la posición física de los módulos hardware es arbitraria para su direccionamiento desde el código de aplicación. • Transparencia a los fallos: si existe un fallo en un módulo hardware, gracias a la redundancia, el código de aplicación tomará directamente el resultado correcto. • Transparencia a la concurrencia: el hecho de que una tarea sea realizada por más o menos bloques es transparente para el código que la invoca. Por lo tanto, esta tesis doctoral contribuye en dos líneas diferentes. En primer lugar, con el diseño de la plataforma HiReCookie y en segundo lugar con el diseño de la arquitectura ARTICo3. Las principales contribuciones de esta tesis se resumen a continuación. • Arquitectura de la HiReCookie incluyendo: o Compatibilidad con la plataforma Cookies para incrementar las capacidades de esta. o División de la arquitectura en distintas islas de alimentación. o Implementación de los diversos modos de bajo consumo y políticas de despertado del nodo. o Creación de un archivo de configuración de la FPGA comprimido para reducir el tiempo y el consumo de la configuración inicial. • Diseño de la arquitectura reconfigurable para FPGAs basadas en RAM ARTICo3: o Modelo de computación y modos de ejecución inspirados en el modelo de CUDA pero basados en hardware reconfigurable con un número variable de bloques de hilos por cada unidad de ejecución. o Estructura para optimizar las transacciones de datos en ráfaga proporcionando datos en cascada o en paralelo a los distinto módulos incluyendo un proceso de votado por mayoría y operaciones de reducción. o Capa de abstracción entre el procesador principal que incluye el código de aplicación y los recursos asignados para las diferentes tareas. o Arquitectura de los módulos hardware reconfigurables para mantener la escalabilidad añadiendo una la interfaz para las nuevas funcionalidades con un simple acceso a una memoria RAM interna. o Caracterización online de las tareas para proporcionar información a un módulo de gestión de recursos para mejorar la operación en términos de energía y procesamiento cuando además se opera entre distintos nieles de tolerancia a fallos. El documento está dividido en dos partes principales formando un total de cinco capítulos. En primer lugar, después de motivar la necesidad de nuevas plataformas para cubrir las nuevas aplicaciones, se detalla el diseño de la plataforma HiReCookie, sus partes, las posibilidades para bajar el consumo energético y se muestran casos de uso de la plataforma así como pruebas de validación del diseño. La segunda parte del documento describe la arquitectura reconfigurable, su implementación en varias FPGAs, y pruebas de validación en términos de capacidad de procesamiento y consumo energético, incluyendo cómo estos aspectos se ven afectados por el nivel de tolerancia a fallos elegido. Los capítulos a lo largo del documento son los siguientes: El capítulo 1 analiza los principales objetivos, motivación y aspectos teóricos necesarios para seguir el resto del documento. El capítulo 2 está centrado en el diseño de la plataforma HiReCookie y sus posibilidades para disminuir el consumo de energía. El capítulo 3 describe la arquitectura reconfigurable ARTICo3. El capítulo 4 se centra en las pruebas de validación de la arquitectura usando la plataforma HiReCookie para la mayoría de los tests. Un ejemplo de aplicación es mostrado para analizar el funcionamiento de la arquitectura. El capítulo 5 concluye esta tesis doctoral comentando las conclusiones obtenidas, las contribuciones originales del trabajo y resultados y líneas futuras. ABSTRACT This PhD Thesis is framed within the field of dynamically reconfigurable embedded systems, advanced sensor networks and distributed computing. The document is centred on the study of processing solutions for high-performance autonomous distributed systems (HPADS) as well as their evolution towards High performance Computing (HPC) systems. The approach of the study is focused on both platform and processor levels to optimise critical aspects such as computing performance, energy efficiency and fault tolerance. HPADS are considered feedback systems, normally networked and/or distributed, with real-time adaptive and predictive functionality. These systems, as part of more complex systems known as Cyber-Physical Systems (CPSs), can be applied in a wide range of fields such as military, health care, manufacturing, aerospace, etc. For the design of HPADS, high levels of dependability, the definition of suitable models of computation, and the use of methodologies and tools to support scalability and complexity management, are required. The first part of the document studies the different possibilities at platform design level in the state of the art, together with description, development and validation tests of the platform proposed in this work to cope with the previously mentioned requirements. The main objectives targeted by this platform design are the following: • Study the feasibility of using SRAM-based FPGAs as the main processor of the platform in terms of energy consumption and performance for high demanding applications. • Analyse and propose energy management techniques to reduce energy consumption in every stage of the working profile of the platform. • Provide a solution with dynamic partial and wireless remote HW reconfiguration (DPR) to be able to change certain parts of the FPGA design at run time and on demand without interrupting the rest of the system. • Demonstrate the applicability of the platform in different test-bench applications. In order to select the best approach for the platform design in terms of processing alternatives, a study of the evolution of the state-of-the-art platforms is required to analyse how different architectures cope with new more demanding applications and scenarios: security, mixed-critical systems for aerospace, multimedia applications, or military environments, among others. In all these scenarios, important changes in the required processing bandwidth or the complexity of the algorithms used are provoking the migration of the platforms from single microprocessor architectures to multiprocessing and heterogeneous solutions with more instant power consumption but higher energy efficiency. Within these solutions, FPGAs and Systems on Chip including FPGA fabric and dedicated hard processors, offer a good trade of among flexibility, processing performance, energy consumption and price, when they are used in demanding applications where working conditions are very likely to vary over time and high complex algorithms are required. The platform architecture proposed in this PhD Thesis is called HiReCookie. It includes an SRAM-based FPGA as the main and only processing unit. The FPGA selected, the Xilinx Spartan-6 LX150, was at the beginning of this work the best choice in terms of amount of resources and power. Although, the power levels are the lowest of these kind of devices, they can be still very high for distributed systems that normally work powered by batteries. For that reason, it is necessary to include different energy saving possibilities to increase the usability of the platform. In order to reduce energy consumption, the platform architecture is divided into different power islands so that only those parts of the systems that are strictly needed are powered on, while the rest of the islands can be completely switched off. This allows a combination of different low power modes to decrease energy. In addition, one of the most important handicaps of SRAM-based FPGAs is that they are not alive at power up. Therefore, recovering the system from a switch-off state requires to reload the FPGA configuration from a non-volatile memory device. For that reason, this PhD Thesis also proposes a methodology to compress the FPGA configuration file in order to reduce time and energy during the initial configuration process. Although some of the requirements for the design of HPADS are already covered by the design of the HiReCookie platform, it is necessary to continue improving energy efficiency, computing performance and fault tolerance. This is only possible by exploiting all the opportunities provided by the processing architectures configured inside the FPGA. Therefore, the second part of the thesis details the design of the so called ARTICo3 FPGA architecture to enhance the already intrinsic capabilities of the FPGA. ARTICo3 is a DPR-capable bus-based virtual architecture for multiple HW acceleration in SRAM-based FPGAs. The architecture provides support for dynamic resource management in real time. In this way, by using DPR, it will be possible to change the levels of computing performance, energy consumption and fault tolerance on demand by increasing or decreasing the amount of resources used by the different tasks. Apart from the detailed design of the architecture and its implementation in different FPGA devices, different validation tests and comparisons are also shown. The main objectives targeted by this FPGA architecture are listed as follows: • Provide a method based on a multithread approach such as those offered by CUDA (Compute Unified Device Architecture) or OpenCL kernel executions, where kernels are executed in a variable number of HW accelerators without requiring application code changes. • Provide an architecture to dynamically adapt working points according to either self-measured or external parameters in terms of energy consumption, fault tolerance and computing performance. Taking advantage of DPR capabilities, the architecture must provide support for a dynamic use of resources in real time. • Exploit concurrent processing capabilities in a standard bus-based system by optimizing data transactions to and from HW accelerators. • Measure the advantage of HW acceleration as a technique to boost performance to improve processing times and save energy by reducing active times for distributed embedded systems. • Dynamically change the levels of HW redundancy to adapt fault tolerance in real time. • Provide HW abstraction from SW application design. FPGAs give the possibility of designing specific HW blocks for every required task to optimise performance while some of them include the possibility of including DPR. Apart from the possibilities provided by manufacturers, the way these HW modules are organised, addressed and multiplexed in area and time can improve computing performance and energy consumption. At the same time, fault tolerance and security techniques can also be dynamically included using DPR. However, the inherent complexity of designing new HW modules for every application is not negligible. It does not only consist of the HW description, but also the design of drivers and interfaces with the rest of the system, while the design space is widened and more complex to define and program. Even though the tools provided by the majority of manufacturers already include predefined bus interfaces, commercial IPs, and templates to ease application prototyping, it is necessary to improve these capabilities. By adding new architectures on top of them, it is possible to take advantage of parallelization and HW redundancy while providing a framework to ease the use of dynamic resource management. ARTICo3 works within a solution space where working points change at run time in a 3D space defined by three different axes: Computation, Consumption, and Fault Tolerance. Therefore, every working point is found as a trade-off solution among these three axes. By means of DPR, different accelerators can be multiplexed so that the amount of available resources for any application is virtually unlimited. Taking advantage of DPR capabilities and a novel way of transmitting data to the reconfigurable HW accelerators, it is possible to dedicate a dynamically-changing number of resources for a given task in order to either boost computing speed or adding HW redundancy and a voting process to increase fault-tolerance levels. At the same time, using an optimised amount of resources for a given task reduces energy consumption by reducing instant power or computing time. In order to keep level complexity under certain limits, it is important that HW changes are transparent for the application code. Therefore, different levels of transparency are targeted by the system: • Scalability transparency: a task must be able to expand its resources without changing the system structure or application algorithms. • Performance transparency: the system must reconfigure itself as load changes. • Replication transparency: multiple instances of the same task are loaded to increase reliability and performance. • Location transparency: resources are accessed with no knowledge of their location by the application code. • Failure transparency: task must be completed despite a failure in some components. • Concurrency transparency: different tasks will work in a concurrent way transparent to the application code. Therefore, as it can be seen, the Thesis is contributing in two different ways. First with the design of the HiReCookie platform and, second with the design of the ARTICo3 architecture. The main contributions of this PhD Thesis are then listed below: • Architecture of the HiReCookie platform including: o Compatibility of the processing layer for high performance applications with the Cookies Wireless Sensor Network platform for fast prototyping and implementation. o A division of the architecture in power islands. o All the different low-power modes. o The creation of the partial-initial bitstream together with the wake-up policies of the node. • The design of the reconfigurable architecture for SRAM FPGAs: ARTICo3: o A model of computation and execution modes inspired in CUDA but based on reconfigurable HW with a dynamic number of thread blocks per kernel. o A structure to optimise burst data transactions providing coalesced or parallel data to HW accelerators, parallel voting process and reduction operation. o The abstraction provided to the host processor with respect to the operation of the kernels in terms of the number of replicas, modes of operation, location in the reconfigurable area and addressing. o The architecture of the modules representing the thread blocks to make the system scalable by adding functional units only adding an access to a BRAM port. o The online characterization of the kernels to provide information to a scheduler or resource manager in terms of energy consumption and processing time when changing among different fault-tolerance levels, as well as if a kernel is expected to work in the memory-bounded or computing-bounded areas. The document of the Thesis is divided into two main parts with a total of five chapters. First, after motivating the need for new platforms to cover new more demanding applications, the design of the HiReCookie platform, its parts and several partial tests are detailed. The design of the platform alone does not cover all the needs of these applications. Therefore, the second part describes the architecture inside the FPGA, called ARTICo3, proposed in this PhD Thesis. The architecture and its implementation are tested in terms of energy consumption and computing performance showing different possibilities to improve fault tolerance and how this impact in energy and time of processing. Chapter 1 shows the main goals of this PhD Thesis and the technology background required to follow the rest of the document. Chapter 2 shows all the details about the design of the FPGA-based platform HiReCookie. Chapter 3 describes the ARTICo3 architecture. Chapter 4 is focused on the validation tests of the ARTICo3 architecture. An application for proof of concept is explained where typical kernels related to image processing and encryption algorithms are used. Further experimental analyses are performed using these kernels. Chapter 5 concludes the document analysing conclusions, comments about the contributions of the work, and some possible future lines for the work.