41 resultados para Audio-visual Speech Recognition, Visual Feature Extraction, Free-parts, Monolithic, ROI
Resumo:
El objetivo del presente proyecto es proporcionar una actividad de la pronunciación y repaso de vocabulario en lengua inglesa para la plataforma Moodle alojada en la página web de Integrated Language Learning Lab (ILLLab). La página web ILLLab tiene el objetivo de que los alumnos de la EUIT de Telecomunicación de la UPM con un nivel de inglés A2 según el Marco Común Europeo de Referencia para las Lenguas (MCERL), puedan trabajar de manera autónoma para avanzar hacia el nivel B2 en inglés. La UPM exige estos conocimientos de nivel de inglés para cursar la asignatura English for Professional and Academic Communication (EPAC) de carácter obligatorio e impartida en el séptimo semestre del Grado en Ingeniería de Telecomunicaciones. Asimismo, se persigue abordar el problema de las escasas actividades de expresión oral de las plataformas de autoaprendizaje se dedican a la formación en idiomas y, más concretamente, al inglés. Con ese fin, se proporciona una herramienta basada en sistemas de reconocimiento de voz para que el usuario practique la pronunciación de las palabras inglesas. En el primer capítulo del trabajo se introduce la aplicación Traffic Lights, explicando sus orígenes y en qué consiste. En el segundo capítulo se abordan aspectos teóricos relacionados con el reconocimiento de voz y se comenta sus funciones principales y las aplicaciones actuales para las que se usa. El tercer capítulo ofrece una explicación detallada de los diferentes lenguajes utilizados para la realización del proyecto, así como de su código desarrollado. En el cuarto capítulo se plantea un manual de usuario de la aplicación, exponiendo al usuario cómo funciona la aplicación y un ejemplo de uso. Además, se añade varias secciones para el administrador de la aplicación, en las que se especifica cómo agregar nuevas palabras en la base de datos y hacer cambios en el tiempo estimado que el usuario tiene para acabar una partida del juego. ABSTRACT: The objective of the present project is to provide an activity of pronunciation and vocabulary review in English language within the platform Moodle hosted at the Integrated Language Learning Lab (ILLLab) website. The ILLLab website has the aim to provide students at the EUIT of Telecommunication in the UPM with activities to develop their A2 level according to the Common European Framework of Reference for Languages (CEFR). In the platform, students can work independently to advance towards a B2 level in English. The UPM requires this level of English proficiency for enrolling in the compulsory subject English for Professional and Academic Communication (EPAC) taught in the seventh semester of the Degree in Telecommunications Engineering. Likewise, this project tries to provide alternatives to solve the problem of scarce speaking activities included in the learning platforms that offer language courses, and specifically, English language courses. For this purpose, it provides a tool based on speech recognition systems so that the user can practice the pronunciation of English words. The first chapter of the project introduces the application Traffic Lights, explaining its origins and what it is. The second chapter deals with theoretical aspects related with speech recognition and comments their main features and current applications for which it is generally used. The third chapter provides a detailed explanation of the different programming languages used for the implementation of the project and reviews its code development. The fourth chapter presents an application user manual, exposing to the user how the application works and an example of use. Also, several sections are added addressed to the application administrator, which specify how to add new words to the database and how to make changes in the original stings as could be the estimated time that the user has to finish the game.
Resumo:
We present an approach to adapt dynamically the language models (LMs) used by a speech recognizer that is part of a spoken dialogue system. We have developed a grammar generation strategy that automatically adapts the LMs using the semantic information that the user provides (represented as dialogue concepts), together with the information regarding the intentions of the speaker (inferred by the dialogue manager, and represented as dialogue goals). We carry out the adaptation as a linear interpolation between a background LM, and one or more of the LMs associated to the dialogue elements (concepts or goals) addressed by the user. The interpolation weights between those models are automatically estimated on each dialogue turn, using measures such as the posterior probabilities of concepts and goals, estimated as part of the inference procedure to determine the actions to be carried out. We propose two approaches to handle the LMs related to concepts and goals. Whereas in the first one we estimate a LM for each one of them, in the second one we apply several clustering strategies to group together those elements that share some common properties, and estimate a LM for each cluster. Our evaluation shows how the system can estimate a dynamic model adapted to each dialogue turn, which helps to improve the performance of the speech recognition (up to a 14.82% of relative improvement), which leads to an improvement in both the language understanding and the dialogue management tasks.
Diseño de un videojuego orientado a mejorar el proceso de enseñanza-aprendizaje de la lengua inglesa
Resumo:
Desde que el proceso de la globalización empezó a tener efectos en la sociedad actual, la lengua inglesa se ha impuesto como primera opción de comunicación entre las grandes empresas y sobre todo en el ámbito de los negocios. Por estos motivos se hace necesario el conocimiento de esta lengua que con el paso de los años ha ido creciendo en número de hablantes. Cada vez son más las personas que quieren dominar la lengua inglesa. El aprendizaje en esta doctrina se va iniciando en edades muy tempranas, facilitando y mejorando así la adquisición de una base de conocimientos con todas las destrezas que tiene la lengua inglesa: lectura, escritura, expresión oral y comprensión oral. Con este proyecto se quiso mejorar el proceso de enseñanza-aprendizaje de la lengua inglesa en un rango de población menor de 13 años. Se propuso crear un método de aprendizaje que motivara al usuario y le reportase una ayuda constante durante su progreso en el conocimiento de la lengua inglesa. El mejor método que se pensó para llevar a cabo este objetivo fue la realización de un videojuego que cumpliese todas las características propuestas anteriormente. Un videojuego de aprendizaje en inglés, que además incluyese algo tan novedoso como el reconocimiento de voz para mejorar la expresión oral del usuario, ayudaría a la población a mejorar el nivel de inglés básico en todas las destrezas así como el establecimiento de una base sólida que serviría para asentar mejor futuros conocimientos más avanzados. ABSTRACT Since Globalization began to have an effect on today's society, the English language has emerged as the first choice for communication among companies and especially in the field of business. Therefore, the command of this language, which over the years has grown in number of speakers, has become more and more necessary. Increasingly people want to master the English language. They start learning at very early age, thus facilitating and improving the acquisition of a new knowledge like English language. The skills of English must be practiced are: reading, writing, listening and speaking. If people learnt all these skills, they could achieve a high level of English. In this project, the aim is to improve the process of teaching and learning English in a range of population less than 13 years. To do so, an interactive learning video game that motivates the users and brings them constant help during their progress in the learning of the English language is designed. The video game designed to learn English, also includes some novelties from the point of view of the technology used as is speech recognition. The aim of this integration is to improve speaking skills of users, who will therefore improve the standard of English in all four basic learning skills and establish a solid base that would facilitate the acquisition of future advanced knowledge.
Resumo:
In recent years, Independent Components Analysis (ICA) has proven itself to be a powerful signal-processing technique for solving the Blind-Source Separation (BSS) problems in different scientific domains. In the present work, an application of ICA for processing NIR hyperspectral images to detect traces of peanut in wheat flour is presented. Processing was performed without a priori knowledge of the chemical composition of the two food materials. The aim was to extract the source signals of the different chemical components from the initial data set and to use them in order to determine the distribution of peanut traces in the hyperspectral images. To determine the optimal number of independent component to be extracted, the Random ICA by blocks method was used. This method is based on the repeated calculation of several models using an increasing number of independent components after randomly segmenting the matrix data into two blocks and then calculating the correlations between the signals extracted from the two blocks. The extracted ICA signals were interpreted and their ability to classify peanut and wheat flour was studied. Finally, all the extracted ICs were used to construct a single synthetic signal that could be used directly with the hyperspectral images to enhance the contrast between the peanut and the wheat flours in a real multi-use industrial environment. Furthermore, feature extraction methods (connected components labelling algorithm followed by flood fill method to extract object contours) were applied in order to target the spatial location of the presence of peanut traces. A good visualization of the distributions of peanut traces was thus obtained
Resumo:
En este proyecto estudia la posibilidad de realizar una verificación de locutor por medio de la biometría de voz. En primer lugar se obtendrán las características principales de la voz, que serían los coeficientes MFCC, partiendo de una base de datos de diferentes locutores con 10 muestras por cada locutor. Con estos resultados se procederá a la creación de los clasificadores con los que luego testearemos y haremos la verificación. Como resultado final obtendremos un sistema capaz de identificar si el locutor es el que buscamos o no. Para la verificación se utilizan clasificadores Support Vector Machine (SVM), especializado en resolver problemas biclase. Los resultados demuestran que el sistema es capaz de verificar que un locutor es quien dice ser comparándolo con el resto de locutores disponibles en la base de datos. ABSTRACT. Verification based on voice features is an important task for a wide variety of applications concerning biometric verification systems. In this work, we propose a human verification though the use of their voice features focused on supervised training classification algorithms. To this aim we have developed a voice feature extraction system based on MFCC features. For classification purposed we have focused our work in using a Support Vector Machine classificator due to it’s optimization for biclass problems. We test our system in a dataset composed of various individuals of di↵erent gender to evaluate our system’s performance. Experimental results reveal that the proposed system is capable of verificating one individual against the rest of the dataset.
Resumo:
Sin duda, el rostro humano ofrece mucha más información de la que pensamos. La cara transmite sin nuestro consentimiento señales no verbales, a partir de las interacciones faciales, que dejan al descubierto nuestro estado afectivo, actividad cognitiva, personalidad y enfermedades. Estudios recientes [OFT14, TODMS15] demuestran que muchas de nuestras decisiones sociales e interpersonales derivan de un previo análisis facial de la cara que nos permite establecer si esa persona es confiable, trabajadora, inteligente, etc. Esta interpretación, propensa a errores, deriva de la capacidad innata de los seres humanas de encontrar estas señales e interpretarlas. Esta capacidad es motivo de estudio, con un especial interés en desarrollar métodos que tengan la habilidad de calcular de manera automática estas señales o atributos asociados a la cara. Así, el interés por la estimación de atributos faciales ha crecido rápidamente en los últimos años por las diversas aplicaciones en que estos métodos pueden ser utilizados: marketing dirigido, sistemas de seguridad, interacción hombre-máquina, etc. Sin embargo, éstos están lejos de ser perfectos y robustos en cualquier dominio de problemas. La principal dificultad encontrada es causada por la alta variabilidad intra-clase debida a los cambios en la condición de la imagen: cambios de iluminación, oclusiones, expresiones faciales, edad, género, etnia, etc.; encontradas frecuentemente en imágenes adquiridas en entornos no controlados. Este de trabajo de investigación estudia técnicas de análisis de imágenes para estimar atributos faciales como el género, la edad y la postura, empleando métodos lineales y explotando las dependencias estadísticas entre estos atributos. Adicionalmente, nuestra propuesta se centrará en la construcción de estimadores que tengan una fuerte relación entre rendimiento y coste computacional. Con respecto a éste último punto, estudiamos un conjunto de estrategias para la clasificación de género y las comparamos con una propuesta basada en un clasificador Bayesiano y una adecuada extracción de características. Analizamos en profundidad el motivo de porqué las técnicas lineales no han logrado resultados competitivos hasta la fecha y mostramos cómo obtener rendimientos similares a las mejores técnicas no-lineales. Se propone un segundo algoritmo para la estimación de edad, basado en un regresor K-NN y una adecuada selección de características tal como se propuso para la clasificación de género. A partir de los experimentos desarrollados, observamos que el rendimiento de los clasificadores se reduce significativamente si los ´estos han sido entrenados y probados sobre diferentes bases de datos. Hemos encontrado que una de las causas es la existencia de dependencias entre atributos faciales que no han sido consideradas en la construcción de los clasificadores. Nuestro resultados demuestran que la variabilidad intra-clase puede ser reducida cuando se consideran las dependencias estadísticas entre los atributos faciales de el género, la edad y la pose; mejorando el rendimiento de nuestros clasificadores de atributos faciales con un coste computacional pequeño. Abstract Surely the human face provides much more information than we think. The face provides without our consent nonverbal cues from facial interactions that reveal our emotional state, cognitive activity, personality and disease. Recent studies [OFT14, TODMS15] show that many of our social and interpersonal decisions derive from a previous facial analysis that allows us to establish whether that person is trustworthy, hardworking, intelligent, etc. This error-prone interpretation derives from the innate ability of human beings to find and interpret these signals. This capability is being studied, with a special interest in developing methods that have the ability to automatically calculate these signs or attributes associated with the face. Thus, the interest in the estimation of facial attributes has grown rapidly in recent years by the various applications in which these methods can be used: targeted marketing, security systems, human-computer interaction, etc. However, these are far from being perfect and robust in any domain of problems. The main difficulty encountered is caused by the high intra-class variability due to changes in the condition of the image: lighting changes, occlusions, facial expressions, age, gender, ethnicity, etc.; often found in images acquired in uncontrolled environments. This research work studies image analysis techniques to estimate facial attributes such as gender, age and pose, using linear methods, and exploiting the statistical dependencies between these attributes. In addition, our proposal will focus on the construction of classifiers that have a good balance between performance and computational cost. We studied a set of strategies for gender classification and we compare them with a proposal based on a Bayesian classifier and a suitable feature extraction based on Linear Discriminant Analysis. We study in depth why linear techniques have failed to provide competitive results to date and show how to obtain similar performances to the best non-linear techniques. A second algorithm is proposed for estimating age, which is based on a K-NN regressor and proper selection of features such as those proposed for the classification of gender. From our experiments we note that performance estimates are significantly reduced if they have been trained and tested on different databases. We have found that one of the causes is the existence of dependencies between facial features that have not been considered in the construction of classifiers. Our results demonstrate that intra-class variability can be reduced when considering the statistical dependencies between facial attributes gender, age and pose, thus improving the performance of our classifiers with a reduced computational cost.
Resumo:
Existen en el mercado numerosas aplicaciones para la generación de reverberación y para la medición de respuestas al impulso acústicas. Sin embargo, éstas son de precios muy elevados y/o no se permite acceder a su código y, mucho menos, distribuir de forma totalmente libre. Además, las herramientas que ofrecen para la medición de respuestas al impulso requieren de un tedioso proceso para la generación de la señal de excitación, su reproducción y grabación y, finalmente, su post-procesado. Este procedimiento puede llevar en ocasiones al usuario a cometer errores debido a la falta de conocimientos técnicos. El propósito de este proyecto es dar solución a algunos de los inconvenientes planteados. Con tal fin se llevó a cabo el desarrollo e implementación de un módulo de reverberación por convolución particionada en tiempo real, haciendo uso de software gratuito y de libre distribución. En concreto, se eligió la estación digital de trabajo (DAW. Digital Audio Worksation) REAPER de la compañía Cockos. Además de incluir las funcionalidades básicas de edición y secuenciación presentes en cualquier DAW, el programa incluye un entorno para la implementación de efectos de audio en lenguaje JS (Jesusonic), y se distribuye con licencias completamente gratuitas y sin limitaciones de uso. Complementariamente, se propone una extensión para REAPER que permite la medición de respuestas al impulso de recintos acústicos de una forma completamente automatizada y amigable para el usuario. Estas respuestas podrán ser almacenadas y posteriormente cargadas en el módulo de reverberación, permitiendo aplicar sobre nuestras pistas de audio la respuesta acústica de cualquier recinto en el que se hayan realizado medidas. La implementación del sistema de medida de respuestas se llevó a cabo empleando la herramienta ReaScript de REAPER, que permite la ejecución de pequeños scripts Python. El programa genera un Barrido Sinusoidal Logarítmico que excita el recinto acústico cuya respuesta se desea medir, grabando la misma en un archivo .wav. Este procedimiento es sencillo, intuitivo y está al alcance de cualquier usuario doméstico, ya que no requiere la utilización de sofisticado instrumental de medida. ABSTRACT. There are numerous applications in the market for the generation of reverb and measurement of acoustic impulse responses. However, they are usually very costly and closed source. In addition, the provided tools for measuring impulse responses require tedious processes for the generation and reproduction of the excitation signal, the recording of the response and its final post-processing. This procedure can sometimes drive the user to make mistakes due to the lack of technical knowledge. The purpose of this project is to solve some of the mentioned problems. To that end we developed and implemented a real-time partitioned convolution reverb module using free open source software. Specifically, the chosen software was the Cockos’ digital audio workstation (DAW) REAPER. In addition to the basic features included in any DAW, such as editing and sequencing, the program includes an environment for implementing audio effects in JS (Jesusonic) language of free distribution and features an unrestricted license. As an extension for REAPER, we propose a fully automated and user-friendly method for measuring rooms’ acoustic impulse responses. These will be stored and then loaded into the reverb module, allowing the user to apply the acoustical response of any room where measurement have been taken to any audio track. The implementation of the impulse response measurement system was done using REAPER’s ReaScript tool that allows the execution of small Python scripts. The program generates a logarithmic sine sweep that excites the room and its response is recorded in a .wav file. This procedure is simple, intuitive and it is accessible to any home user as it does not require the use of sophisticated measuring equipment.
Resumo:
El objetivo general de este trabajo es el correcto funcionamiento de un sistema de reconocimiento facial compuesto de varios módulos, implementados en distintos lenguajes. Uno de dichos módulos está escrito en Python y se encargarí de determinar el género del rostro o rostros que aparecen en una imagen o en un fotograma de una secuencia de vídeo. El otro módulo, escrito en C++, llevará a cabo el reconocimiento de cada una de las partes de la cara (ojos, nariz, boca) y la orientación hacia la que está posicionada (derecha, izquierda). La primera parte de esta memoria corresponde a la reimplementación de todas las partes de un analizador facial, que constituyen el primer módulo antes mencionado. Estas partes son un analizador, compuesto a su vez por un reconocedor (Tracker) y un procesador (Processor), y una clase visor para poder visualizar los resultados. Por un lado, el reconocedor o "Tracker.es el encargado de encontrar la cara y sus partes, que serán pasadas al procesador o Processor, que analizará la cara obtenida por el reconocedor y determinará su género. Este módulo estaba dise~nado completamente en C y OpenCV 1.0, y ha sido reescrito en Python y OpenCV 2.4. Y en la segunda parte, se explica cómo realizar la comunicación entre el primer módulo escrito en Python y el segundo escrito en C++. Además, se analizarán diferentes herramientas para poder ejecutar código C++ desde programas Python. Dichas herramientas son PyBindGen, Cython y Boost. Dependiendo de las necesidades del programador se contará cuál de ellas es más conveniente utilizar en cada caso. Por último, en el apartado de resultados se puede observar el funcionamiento del sistema con la integración de los dos módulos, y cómo se muestran por pantalla los puntos de interés, el género y la orientación del rostro utilizando imágenes tomadas con una cámara web.---ABSTRACT---The main objective of this document is the proper functioning of a facial recognition system composed of two modules, implemented in diferent languages. One of these modules is written in Python, and his purpose is determining the gender of the face or faces in an image or a frame of a video sequence. The other module is written in C ++ and it will perform the recognition of each of the parts of the face (eyes, nose , mouth), and the head pose (right, left).The first part of this document corresponds to the reimplementacion of all components of a facial analyzer , which constitute the first module that I mentioned before. These parts are an analyzer , composed by a tracke) and a processor, and a viewer to display the results. The tracker function is to find and its parts, which will be passed to the processor, which will analyze the face obtained by the tracker. The processor will determine the face's gender. This module was completely written in C and OpenCV 1.0, and it has been rewritten in Python and OpenCV 2.4. And in the second part, it explains how to comunicate two modules, one of them written in Python and the other one written in C++. Furthermore, it talks about some tools to execute C++ code from Python scripts. The tools are PyBindGen, Cython and Boost. It will tell which one of those tools is better to use depend on the situation. Finally, in the results section it is possible to see how the system works with the integration of the two modules, and how the points of interest, the gender an the head pose are displayed on the screen using images taken from a webcam.
Resumo:
A more natural, intuitive, user-friendly, and less intrusive Human–Computer interface for controlling an application by executing hand gestures is presented. For this purpose, a robust vision-based hand-gesture recognition system has been developed, and a new database has been created to test it. The system is divided into three stages: detection, tracking, and recognition. The detection stage searches in every frame of a video sequence potential hand poses using a binary Support Vector Machine classifier and Local Binary Patterns as feature vectors. These detections are employed as input of a tracker to generate a spatio-temporal trajectory of hand poses. Finally, the recognition stage segments a spatio-temporal volume of data using the obtained trajectories, and compute a video descriptor called Volumetric Spatiograms of Local Binary Patterns (VS-LBP), which is delivered to a bank of SVM classifiers to perform the gesture recognition. The VS-LBP is a novel video descriptor that constitutes one of the most important contributions of the paper, which is able to provide much richer spatio-temporal information than other existing approaches in the state of the art with a manageable computational cost. Excellent results have been obtained outperforming other approaches of the state of the art.
Resumo:
This paper discusses the target localization problem of wireless visual sensor networks. Specifically, each node with a low-resolution camera extracts multiple feature points to represent the target at the sensor node level. A statistical method of merging the position information of different sensor nodes to select the most correlated feature point pair at the base station is presented. This method releases the influence of the accuracy of target extraction on the accuracy of target localization in universal coordinate system. Simulations show that, compared with other relative approach, our proposed method can generate more desirable target localization's accuracy, and it has a better trade-off between camera node usage and localization accuracy.
Resumo:
This paper discusses the target localization problem in wireless visual sensor networks. Additive noises and measurement errors will affect the accuracy of target localization when the visual nodes are equipped with low-resolution cameras. In the goal of improving the accuracy of target localization without prior knowledge of the target, each node extracts multiple feature points from images to represent the target at the sensor node level. A statistical method is presented to match the most correlated feature point pair for merging the position information of different sensor nodes at the base station. Besides, in the case that more than one target exists in the field of interest, a scheme for locating multiple targets is provided. Simulation results show that, our proposed method has desirable performance in improving the accuracy of locating single target or multiple targets. Results also show that the proposed method has a better trade-off between camera node usage and localization accuracy.