36 resultados para Activity-based costing system
Resumo:
In this paper the daily temporal and spatial behavior of electric vehicles (EVs) is modelled using an activity-based (ActBM) microsimulation model for Flanders region (Belgium). Assuming that all EVs are completely charged at the beginning of the day, this mobility model is used to determine the percentage of Flemish vehicles that cannot cover their programmed daily trips and need to be recharged during the day. Assuming a variable electricity price, an optimization algorithm determines when and where EVs can be recharged at minimum cost for their owners. This optimization takes into account the individual mobility constraint for each vehicle, as they can only be charged when the car is stopped and the owner is performing an activity. From this information, the aggregated electric demand for Flanders is obtained, identifying the most overloaded areas at the critical hours. Finally it is also analyzed what activities EV owners are underway during their recharging period. From this analysis, different actions for public charging point deployment in different areas and for different activities are proposed.
Resumo:
Abstract We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multi-component systems in reliability settings. Repair times and component lifetimes are random variables that follow a general distribution, and the repair service adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and other reliability measures. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty involved in applying this method is finding a suitable function, called the importance function, to define the regions. In this paper we introduce an importance function which, for unbalanced systems, represents a great improvement over the importance function used in previous papers. We also demonstrate the asymptotic optimality of RESTART estimators in these models. Several examples are presented to show the effectiveness of the new approach, and probabilities up to the order of 10-42 are accurately estimated with little computational effort.
Resumo:
One of the main objectives of European Commission related to climate and energy is the well-known 20-20-20 targets to be achieved in 2020: Europe has to reduce greenhouse gas emissions of at least 20% below 1990 levels, 20% of EU energy consumption has to come from renewable resources and, finally, a 20% reduction in primary energy use compared with projected levels, has to be achieved by improving energy efficiency. In order to reach these objectives, it is necessary to reduce the overall emissions, mainly in transport (reducing CO2, NOx and other pollutants), and to increase the penetration of the intermittent renewable energy. A high deployment of battery electric (BEVs) and plug-in hybrid electric vehicles (PHEVs), with a low-cost source of energy storage, could help to achieve both targets. Hybrid electric vehicles (HEVs) use a combination of a conventional internal combustion engine (ICE) with one (or more) electric motor. There are different grades of hybridation from micro-hybrids with start-stop capability, mild hybrids (with kinetic energy recovery), medium hybrids (mild hybrids plus energy assist) and full hybrids (medium hybrids plus electric launch capability). These last types of vehicles use a typical battery capacity around 1-2 kWh. Plug in hybrid electric vehicles (PHEVs) use larger battery capacities to achieve limited electric-only driving range. These vehicles are charged by on-board electricity generation or either plugging into electric outlets. Typical battery capacity is around 10 kWh. Battery Electric Vehicles (BEVs) are only driven by electric power and their typical battery capacity is around 15-20 kWh. One type of PHEV, the Extended Range Electric Vehicle (EREV), operates as a BEV until its plug-in battery capacity is depleted; at which point its gasoline engine powers an electric generator to extend the vehicle's range. The charging of PHEVs (including EREVs) and BEVs will have different impacts to the electric grid, depending on the number of vehicles and the start time for charging. Initially, the lecture will start analyzing the electrical power requirements for charging PHEVs-BEVs in Flanders region (Belgium) under different charging scenarios. Secondly and based on an activity-based microsimulation mobility model, an efficient method to reduce this impact will be presented.
Resumo:
Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient?s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system?s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.
Resumo:
Mobile activity recognition focuses on inferring the current activities of a mobile user by leveraging the sensory data that is available on today’s smart phones. The state of the art in mobile activity recognition uses traditional classification learning techniques. Thus, the learning process typically involves: i) collection of labelled sensory data that is transferred and collated in a centralised repository; ii) model building where the classification model is trained and tested using the collected data; iii) a model deployment stage where the learnt model is deployed on-board a mobile device for identifying activities based on new sensory data. In this paper, we demonstrate the Mobile Activity Recognition System (MARS) where for the first time the model is built and continuously updated on-board the mobile device itself using data stream mining. The advantages of the on-board approach are that it allows model personalisation and increased privacy as the data is not sent to any external site. Furthermore, when the user or its activity profile changes MARS enables promptly adaptation. MARS has been implemented on the Android platform to demonstrate that it can achieve accurate mobile activity recognition. Moreover, we can show in practise that MARS quickly adapts to user profile changes while at the same time being scalable and efficient in terms of consumption of the device resources.
Resumo:
In this article, the authors examine the current status of different elements that integrate the landscape of the municipality of Olias del Rey in Toledo (Spain). A methodology for the study of rural roads, activity farming and local hunting management. We used Geographic Information Technologies (GIT) in order to optimize spatial information including the design of a Geographic Information System (GIS). In the acquisition of field data we have used vehicle "mobile mapping" instrumentation equipped with GNSS, LiDAR, digital cameras and odometer. The main objective is the integration of geoinformation and geovisualization of the information to provide a fundamental tool for rural planning and management.