33 resultados para 680302 Cement and concrete materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El auge que ha surgido en los últimos años por la reparación de edificios y estructuras construidas con hormigón ha llevado al desarrollo de morteros de reparación cada vez más tecnológicos. En el desarrollo de estos morteros por parte de los fabricantes, surge la disyuntiva en el uso de los polímeros en sus formulaciones, por no encontrarse justificado en ocasiones el trinomio prestaciones/precio/aplicación. En esta tesis se ha realizado un estudio exhaustivo para la justificación de la utilización de estos morteros como morteros de reparación estructural como respuesta a la demanda actual disponiéndolo en tres partes: En la primera parte se realizó un estudio del arte de los morteros y sus constituyentes. El uso de los morteros se remonta a la antigüedad, utilizándose como componentes yeso y cal fundamentalmente. Los griegos y romanos desarrollaron el concepto de morteros de cal, introduciendo componentes como las puzolanas, cales hidraúlicas y áridos de polvo de mármol dando origen a morteros muy parecidos a los hormigones actuales. En la edad media y renacimiento se perdió la tecnología desarrollada por los romanos debido al extenso uso de la piedra en las construcciones civiles, defensivas y religiosas. Hubo que esperar hasta el siglo XIX para que J. Aspdin descubriese el actual cemento como el principal compuesto hidraúlico. Por último y ya en el siglo XX con la aparición de moléculas tales como estireno, melanina, cloruro de vinilo y poliésteres se comenzó a desarrollar la industria de los polímeros que se añadieron a los morteros dando lugar a los “composites”. El uso de polímeros en matrices cementantes dotan al mortero de propiedades tales como: adherencia, flexibilidad y trabajabilidad, como ya se tiene constancia desde los años 30 con el uso de caucho naturales. En la actualidad el uso de polímeros de síntesis (polivinialacetato, estireno-butadieno, viniacrílico y resinas epoxi) hacen que principalmente el mortero tenga mayor resistencia al ataque del agua y por lo tanto aumente su durabilidad ya que se minimizan todas las reacciones de deterioro (hielo, humedad, ataque biológico,…). En el presente estudio el polímero que se utilizó fue en estado polvo: polímero redispersable. Estos polímeros están encapsulados y cuando se ponen en contacto con el agua se liberan de la cápsula formando de nuevo el gel. En los morteros de reparación el único compuesto hidraúlico que hay es el cemento y es el principal constituyente hoy en día de los materiales de construcción. El cemento se obtiene por molienda conjunta de Clínker y yeso. El Clínker se obtiene por cocción de una mezcla de arcillas y calizas hasta una temperatura de 1450-1500º C por reacción en estado fundente. Para esta reacción se deben premachacar y homogeneizar las materias primas extraídas de la cantera. Son dosificadas en el horno con unas proporciones tales que cumplan con unas relación de óxidos tales que permitan formar las fases anhidras del Clínker C3S, C2S, C3A y C4AF. De la hidratación de las fases se obtiene el gel CSH que es el que proporciona al cemento de sus propiedades. Existe una norma (UNE-EN 197-1) que establece la composición, especificaciones y tipos de cementos que se fabrican en España. La tendencia actual en la fabricación del cemento pasa por el uso de cementos con mayores contenidos de adiciones (cal, puzolana, cenizas volantes, humo de sílice,…) con el objeto de obtener cementos más sostenibles. Otros componentes que influyen en las características de los morteros son: - Áridos. En el desarrollo de los morteros se suelen usar naturales, bien calizos o silícicos. Hacen la función de relleno y de cohesionantes de la matriz cementante. Deben ser inertes - Aditivos. Son aquellos componentes del mortero que son dosificados en una proporción menor al 5%. Los más usados son los superplastificantes por su acción de reductores de agua que revierte en una mayor durabilidad del mortero. Una vez analizada la composición de los morteros, la mejora tecnológica de los mismos está orientada al aumento de la durabilidad de su vida en obra. La durabilidad se define como la capacidad que éste tiene de resistir a la acción del ambiente, ataques químicos, físicos, biológicos o cualquier proceso que tienda a su destrucción. Estos procesos dependen de factores tales como la porosidad del hormigón y de la exposición al ambiente. En cuanto a la porosidad hay que tener en cuenta la distribución de macroporos, mesoporos y microporos de la estructura del hormigón, ya que no todos son susceptibles de que se produzca el transporte de agentes deteriorantes, provocando tensiones internas en las paredes de los mismos y destruyendo la matriz cementante Por otro lado los procesos de deterioro están relacionados con la acción del agua bien como agente directo o como vehículo de transporte del agente deteriorante. Un ambiente que resulta muy agresivo para los hormigones es el marino. En este caso los procesos de deterioro están relacionados con la presencia de cloruros y de sulfatos tanto en el agua de mar como en la atmosfera que en combinación con el CO2 y O2 forman la sal de Friedel. El deterioro de las estructuras en ambientes marinos se produce por la debilitación de la matriz cementante y posterior corrosión de las armaduras que provocan un aumento de volumen en el interior y rotura de la matriz cementante por tensiones capilares. Otras reacciones que pueden producir estos efectos son árido-álcali y difusión de iones cloruro. La durabilidad de un hormigón también depende del tipo de cemento y su composición química (cementos con altos contenidos de adición son más resistentes), relación agua/cemento y contenido de cemento. La Norma UNE-EN 1504 que consta de 10 partes, define los productos para la protección y reparación de estructuras de hormigón, el control de calidad de los productos, propiedades físico-químicas y durables que deben cumplir. En esta Norma se referencian otras 65 normas que ofrecen los métodos de ensayo para la evaluación de los sistemas de reparación. En la segunda parte de esta Tesis se hizo un diseño de experimentos con diferentes morteros poliméricos (con concentraciones de polímero entre 0 y 25%), tomando como referencia un mortero control sin polímero, y se estudiaron sus propiedades físico-químicas, mecánicas y durables. Para mortero con baja proporción de polímero se recurre a sistemas monocomponentes y para concentraciones altas bicomponentes en la que el polímero está en dispersión acuosa. Las propiedades mecánicas medidas fueron: resistencia a compresión, resistencia a flexión, módulo de elasticidad, adherencia por tracción directa y expansión-retracción, todas ellas bajo normas UNE. Como ensayos de caracterización de la durabilidad: absorción capilar, resistencia a carbonatación y adherencia a tracción después de ciclos hielo-deshielo. El objeto de este estudio es seleccionar el mortero con mejor resultado general para posteriormente hacer una comparativa entre un mortero con polímero (cantidad optimizada) y un mortero sin polímero. Para seleccionar esa cantidad óptima de polímero a usar se han tenido en cuenta los siguientes criterios: el mortero debe tener una clasificación R4 en cuanto a prestaciones mecánicas al igual que para evaluar sus propiedades durables frente a los ciclos realizados, siempre teniendo en cuenta que la adición de polímero no puede ser elevada para hacer el mortero competitivo. De este estudio se obtuvieron las siguientes conclusiones generales: - Un mortero normalizado no cumple con propiedades para ser clasificado como R3 o R4. - Sin necesidad de polímero se puede obtener un mortero que cumpliría con R4 para gran parte de las características medidas - Es necesario usar relaciones a:c< 0.5 para conseguir morteros R4, - La adición de polímero mejora siempre la adherencia, abrasión, absorción capilar y resistencia a carbonatación - Las diferentes proporciones de polímero usadas siempre suponen una mejora tecnológica en propiedades mecánicas y de durabilidad. - El polímero no influye sobre la expansión y retracción del mortero. - La adherencia se mejora notablemente con el uso del polímero. - La presencia de polímero en los morteros mejoran las propiedades relacionadas con la acción del agua, por aumento del poder cementante y por lo tanto de la cohesión. El poder cementante disminuye la porosidad. Como consecuencia final de este estudio se determinó que la cantidad óptima de polímero para la segunda parte del estudio es 2.0-3.5%. La tercera parte consistió en el estudio comparativo de dos morteros: uno sin polímero (mortero A) y otro con la cantidad optimizada de polímero, concluida en la parte anterior (mortero B). Una vez definido el porcentaje de polímeros que mejor se adapta a los resultados, se plantea un nuevo esqueleto granular mejorado, tomando una nueva dosificación de tamaños de áridos, tanto para el mortero de referencia, como para el mortero con polímeros, y se procede a realizar los ensayos para su caracterización física, microestructural y de durabilidad, realizándose, además de los ensayos de la parte 1, mediciones de las propiedades microestructurales que se estudiaron a través de las técnicas de porosimetría de mercurio y microscopia electrónica de barrido (SEM); así como propiedades del mortero en estado fresco (consistencia, contenido de aire ocluido y tiempo final de fraguado). El uso del polímero frente a la no incorporación en la formulación del mortero, proporcionó al mismo de las siguientes ventajas: - Respecto a sus propiedades en estado fresco: El mortero B presentó mayor consistencia y menor cantidad de aire ocluido lo cual hace un mortero más trabajable y más dúctil al igual que más resistente porque al endurecer dejará menos huecos en su estructura interna y aumentará su durabilidad. Al tener también mayor tiempo de fraguado, pero no excesivo permite que la manejabilidad para puesta en obra sea mayor, - Respecto a sus propiedades mecánicas: Destacar la mejora en la adherencia. Es una de las principales propiedades que confiere el polímero a los morteros. Esta mayor adherencia revierte en una mejora de la adherencia al soporte, minimización de las posibles reacciones en la interfase hormigón-mortero y por lo tanto un aumento en la durabilidad de la reparación ejecutada con el mortero y por consecuencia del hormigón. - Respecto a propiedades microestructurales: la porosidad del mortero con polímero es menor y menor tamaño de poro critico susceptible de ser atacado por agentes externos causantes de deterioro. De los datos obtenidos por SEM no se observaron grandes diferencias - En cuanto a abrasión y absorción capilar el mortero B presentó mejor comportamiento como consecuencia de su menor porosidad y su estructura microscópica. - Por último el comportamiento frente al ataque de sulfatos y agua de mar, así como al frente de carbonatación, fue más resistente en el mortero con polímero por su menor permeabilidad y su menor porosidad. Para completar el estudio de esta tesis, y debido a la gran importancia que están tomando en la actualidad factores como la sostenibilidad se ha realizado un análisis de ciclo de vida de los dos morteros objeto de estudio de la segunda parte experimental.In recent years, the extended use of repair materials for buildings and structures made the development of repair mortars more and more technical. In the development of these mortars by producers, the use of polymers in the formulations is a key point, because sometimes this use is not justified when looking to the performance/price/application as a whole. This thesis is an exhaustive study to justify the use of these mortars as a response to the current growing demand for structural repair. The thesis is classified in three parts:The first part is the study of the state of the art of mortars and their constituents.In ancient times, widely used mortars were based on lime and gypsum. The Greeks and Romans developed the concept of lime mortars, introducing components such as pozzolans, hydraulic limes and marble dust as aggregates, giving very similar concrete mortars to the ones used currently. In the middle Age and Renaissance, the technology developed by the Romans was lost, due to the extensive use of stone in the civil, religious and defensive constructions. It was not until the 19th century, when J. Aspdin discovered the current cement as the main hydraulic compound. Finally in the 20th century, with the appearance of molecules such as styrene, melanin, vinyl chloride and polyester, the industry began to develop polymers which were added to the binder to form special "composites".The use of polymers in cementitious matrixes give properties to the mortar such as adhesion, Currently, the result of the polymer synthesis (polivynilacetate, styrene-butadiene, vynilacrylic and epoxy resins) is that mortars have increased resistance to water attack and therefore, they increase their durability since all reactions of deterioration are minimised (ice, humidity, biological attack,...). In the present study the polymer used was redispersible polymer powder. These polymers are encapsulated and when in contact with water, they are released from the capsule forming a gel.In the repair mortars, the only hydraulic compound is the cement and nowadays, this is the main constituent of building materials. The current trend is centered in the use of higher contents of additions (lime, pozzolana, fly ash, silica, silica fume...) in order to obtain more sustainable cements. Once the composition of mortars is analyzed, the technological improvement is centred in increasing the durability of the working life. Durability is defined as the ability to resist the action of the environment, chemical, physical, and biological attacks or any process that tends to its destruction. These processes depend on factors such as the concrete porosity and the environmental exposure. In terms of porosity, it be considered, the distribution of Macropores and mesopores and pores of the concrete structure, since not all of them are capable of causing the transportation of damaging agents, causing internal stresses on the same walls and destroying the cementing matrix.In general, deterioration processes are related to the action of water, either as direct agent or as a transport vehicle. Concrete durability also depends on the type of cement and its chemical composition (cement with high addition amounts are more resistant), water/cement ratio and cement content. The standard UNE-EN 1504 consists of 10 parts and defines the products for the protection and repair of concrete, the quality control of products, physical-chemical properties and durability. Other 65 standards that provide the test methods for the evaluation of repair systems are referenced in this standard. In the second part of this thesis there is a design of experiments with different polymer mortars (with concentrations of polymer between 0 and 25%), taking a control mortar without polymer as a reference and its physico-chemical, mechanical and durable properties were studied. For mortars with low proportion of polymer, 1 component systems are used (powder polymer) and for high polymer concentrations, water dispersion polymers are used. The mechanical properties measured were: compressive strength, flexural strength, modulus of elasticity, adhesion by direct traction and expansion-shrinkage, all of them under standards UNE. As a characterization of the durability, following tests are carried out: capillary absorption, resistance to carbonation and pull out adhesion after freeze-thaw cycles. The target of this study is to select the best mortar to make a comparison between mortars with polymer (optimized amount) and mortars without polymer. To select the optimum amount of polymer the following criteria have been considered: the mortar must have a classification R4 in terms of mechanical performance as well as in durability properties against the performed cycles, always bearing in mind that the addition of polymer cannot be too high to make the mortar competitive in price. The following general conclusions were obtained from this study: - A standard mortar does not fulfill the properties to be classified as R3 or R4 - Without polymer, a mortar may fulfill R4 for most of the measured characteristics. - It is necessary to use relations w/c ratio < 0.5 to get R4 mortars - The addition of polymer always improves adhesion, abrasion, capillary absorption and carbonation resistance - The different proportions of polymer used always improve the mechanical properties and durability. - The polymer has no influence on the expansion and shrinkage of the mortar - Adhesion is improved significantly with the use of polymer. - The presence of polymer in mortars improves the properties related to the action of the water, by the increase of the cement power and therefore the cohesion. The cementitious properties decrease the porosity. As final result of this study, it was determined that the optimum amount of polymer for the second part of the study is 2.0 - 3.5%. The third part is the comparative study between two mortars: one without polymer (A mortar) and another with the optimized amount of polymer, completed in the previous part (mortar B). Once the percentage of polymer is defined, a new granular skeleton is defined, with a new dosing of aggregate sizes, for both the reference mortar, the mortar with polymers, and the tests for physical, microstructural characterization and durability, are performed, as well as trials of part 1, measurements of the microstructural properties that were studied by scanning electron microscopy (SEM) and mercury porosimetry techniques; as well as properties of the mortar in fresh State (consistency, content of entrained air and final setting time). The use of polymer versus non polymer mortar, provided the following advantages: - In fresh state: mortar with polymer presented higher consistency and least amount of entrained air, which makes a mortar more workable and more ductile as well as more resistant because hardening will leave fewer gaps in its internal structure and increase its durability. Also allow it allows a better workability because of the longer (not excessive) setting time. - Regarding the mechanical properties: improvement in adhesion. It is one of the main properties which give the polymer to mortars. This higher adhesion results in an improvement of adhesion to the substrate, minimization of possible reactions at the concrete-mortar interface and therefore an increase in the durability of the repair carried out with mortar and concrete. - Respect to microstructural properties: the porosity of mortar with polymer is less and with smaller pore size, critical to be attacked by external agents causing deterioration. No major differences were observed from the data obtained by SEM - In terms of abrasion and capillary absorption, polymer mortar presented better performance as a result of its lower porosity and its microscopic structure. - Finally behavior against attack by sulfates and seawater, as well as to carbonation, was better in the mortar with polymer because of its lower permeability and its lower porosity. To complete the study, due to the great importance of sustainability for future market facts, the life cycle of the two mortars studied was analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study brings new insights on the hydrogen assisted stress corrosion on damage tolerance of a high-strength duplex stainless steel wire which concerns its potential use as active reinforcement for concrete prestressing. The adopted procedure was to experimentally state the effect of hydrogen on the damage tolerance of cylindrical smooth and precracked wire specimens exposed to stress corrosion cracking using the aggressive medium of the standard test developed by FIP (International Prestressing Federation). Stress corrosion testing, mechanical fracture tests and scanning electron microscopy analysis allowed the damage assessment, and explain the synergy between mechanical loading and environment action on the failure sequence of the wire. In presence of previous damage, hydrogen affects the wire behavior in a qualitative sense, consistently to the fracture anisotropy attributable to cold drawing, but it does not produce quantitative changes since the steel fully preserves its damage tolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desde mediados de la década de los 80 se está investigando sobre el hormigón autocompactante. Cada día, su uso en el mundo de la construcción es más común debido a sus numerosas ventajas como su excelente fluidez ya que puede fluir bajo su propio peso y llenar encofrados con formas complicadas y muy armados sin necesidad de compactaciones internas o externas. Por otra parte, la búsqueda de materiales más resistentes y duraderos, ha dado lugar a la incorporación de adiciones en materiales a base de cemento. En las últimas dos décadas, los ensayos con los nanomateriales, ha experimentado un gran aumento. Los resultados hasta ahora obtenidos pueden asumir no sólo un aumento en la resistencia de estos materiales, pero un cambio es su funcionalidad. Estas nanopartículas, concretamente la nanosílice, no sólo mejoran sus propiedades mecánicas y especialmente sus propiedades durables, sino que pueden implicar un cambio sustancial en las condiciones de uso y en su ciclo de vida. Este trabajo tiene como principal objetivo el estudio de las propiedades mecánicas, características microestructurales y durables de un hormigón autocompactante cuando se le agrega como adición nanosílice, microsílice y mezcla binarias de ambas, como adición al cemento. Para ello se han realizado 10 mezclas de hormigón. Se utilizó como referencia un hormigón autocompactante obtenido con cemento, caliza, árido, aditivo modificador de viscosidad Se han fabricado tres hormigones con la misma dosificación pero con diferentes contenidos de nanosílice. 2,5%, 5% y 7,5% Tres dosificaciones con adición de microsílice 2,5%, 5% y 7,5% y las tres restantes con mezclas binarias de nanosílice y microsílice con respectivamente2,5%-2,5%, 5%-2,5% y 2,5%-5%, sobre el peso del cemento. El contenido de superplastificante se modificó para conseguir las características de autocompactabilidad. Para observar los efectos de las adiciones añadidas al hormigón, se realiza una extensa campaña experimental. En ella se evaluaron en primer lugar, las características de autocompactabilidad del material en estado fresco, mediante los ensayos prescritos en la Instrucción Española del hormigón estructural EHE 08. Las propiedades mecánicas fueron evaluadas con ensayos de resistencia a compresión, resistencia a tracción indirecta y módulo de elasticidad. Las características microestructurales fueron analizadas mediante porosimetría por intrusión de mercurio, el análisis termogravimétrico y la microscopía electrónica de barrido. Para el estudio de la capacidad durable de las mezclas se realizaron ensayos de resistividad eléctrica, migración de cloruros, difusión de cloruros, carbonatación acelerada, absorción capilar y resistencia al hielo-deshielo. Los resultados ponen de manifiesto que la acción de las adiciones genera mejoras en las propiedades resistentes del material. Así, la adición de nanosílice proporciona mayores resistencias a compresión que la microsílice, sin embargo las mezclas binarias con bajas proporciones de adición producen mayores resistencias. Por otra parte, se observó mediante la determinación de las relaciones de gel/portlandita, que las mezclas que contienen nanosílice tienen una mayor actividad puzolánica que las que contienen microsílice. En las mezclas binarias se obtuvo como resultado que mientras mayor es el contenido de nanosílice en la mezcla mayor es la actividad puzolánica. Unido a lo anteriormente expuesto, el estudio de la porosidad da como resultado que la adición de nanosílice genera un refinamiento del tamaño de los poros mientras que la adición de microsílice disminuye la cantidad de los mismos sin variar el tamaño de poro medio. Por su parte, en las micrografías, se visualizó la formación de cristales procedentes de la hidratación del cemento. En ellas, se pudo observar, que al adicionar nanosílice, la velocidad de hidratación aumenta al aumentar la formación de monosulfoaluminatos con escasa presencia de etringita. Mientras que en las mezclas con adición de microsílice se observan mayor cantidad de cristales de etringita, lo que confirma que la velocidad de hidratación en estos últimos fue menor. Mediante el estudio de los resultados de las pruebas de durabilidad, se observó que no hay diferencias significativas entre el coeficiente de migración de cloruros y el coeficiente de difusión de cloruros en hormigones con adición de nano o microsílice. Aunque este coeficiente es ligeramente menor en mezclas con adición de microsílice. Sin embargo, en las mezclas binarias de ambas adiciones se obtuvo valores de los coeficientes de difusión o migración de cloruros inferiores a los obtenidos en mezclas con una única adición. Esto se evidencia en los resultados de las pruebas de resistividad eléctrica, de difusión de cloruros y de migración de cloruros. Esto puede ser debido a la suma de los efectos que producen el nano y micro adiciones en la porosidad. El resultado mostró que nanosílice tiene un papel importante en la reducción de los poros y la microsílice disminuye el volumen total de ellos. Esto permite definir la vida útil de estos hormigones a valores muy superiores a los exigidos por la EHE-08, por lo que es posible reducir, de forma notable, el recubrimiento exigido en ambiente de alta agresividad asegurando un buen comportamiento en servicio. Por otra parte, la pérdida de masa debido a los ciclos de congelación-descongelación es significativamente menor en los hormigones que contienen nanosílice que los que contienen microsílice. Este resultado está de acuerdo con el ensayo de absorción capilar. De manera general, se puede concluir que son las mezclas binarias y más concretamente la mezcla con un 5% de nanosílice y 2,5% de microsílice la que presenta los mejores resultados tanto en su comportamiento resistente con en su comportamiento durable. Esto puede ser debido a que en estas mezclas la nanosílice se comporta como un núcleo de activación de las reacciones puzolánicas rodeado de partículas de mayor tamaño. Además, el extraordinario comportamiento durable puede deberse también a la continuidad en la curva granulométrica por la existencia de la microsílice, el filler calizo, el cemento, la arena y la gravilla con tamaños de partículas que garantice mezclas muy compactas que presentan elevadas prestaciones. Since the middle of the decade of the 80 is being investigated about self-consolidating concrete. Every day, its use in the world of construction is more common due to their numerous advantages as its excellent fluidity such that it can flow under its own weight and fill formworks with complicated shapes and congested reinforcement without need for internal or external compactions. Moreover, the search for more resistant and durable materials, has led to the incorporation of additions to cement-based materials. In the last two decades, trials with nanomaterials, has experienced a large increase. The results so far obtained can assume not only an increase in the resistance of these materials but a change is its functionality. These nano particles, particularly the nano silica, not only improve their mechanical properties and especially its durable properties, but that may imply a substantial change in the conditions of use and in their life cycle. This work has as its main objective the study of the mechanical properties, the microstructural characteristics and durability capacity in one self-compacting concrete, when added as addition to cement: nano silica, micro silica o binary mixtures of both. To this effect, 10 concrete mixes have been made. As reference one with a certain amount of cement, limestone filler, viscosity modifying additive and water/binder relation. Furthermore they were manufactured with the same dosage three mix with addition of 2.5%, 5% and 7.5% of nano silica by weight of cement. Other three with 2.5%, 5% and 7.5% of micro silica and the remaining three with binary mixtures of 2.5%-2.5%, 5%-2.5% and 2.5%-5% of silica nano-micro silica respectively, b weight of cement, varying only the amount of superplasticizer to obtain concrete with characteristics of self-compactability. To observe the effects of the additions added to the concrete, an extensive experimental campaign was performed. It assessed, first, the characteristics of self-compactability of fresh material through the tests prescribed in the Spanish Structural Instruction Concrete EHE 08. The mechanical properties were evaluated by compression strength tests, indirect tensile strength and modulus of elasticity. The microstructural properties were analyzed by mercury intrusion porosimetry, thermogravimetric analysis and scanning electron microscopy. To study the durability, were performed electrical resistivity tests, migration and diffusion of chlorides, accelerated carbonation, capillary suction and resistance to freeze-thaw cycles. The results show that the action of the additions generates improvements in the strength properties of the material. Specifically, the addition of nano silica provides greater resistance to compression that the mix with micro silica, however binary mixtures with low addition rates generate higher strengths. Moreover, it was observed by determining relationships gel/portlandite, that the pozzolanic activity in the mixtures with nano silica was higher than in the mixtures with micro silica. In binary mixtures it was found that the highest content of nano silica in the mix is the one with the highest pozzolanic activity. Together with the foregoing, the study of the porosity results in the mixture with addition of nano silica generates a refinement of pore size while adding micro silica decreases the amount thereof without changing the average pore size. On the other hand, in the micrographs, the formation of crystals of cement hydration was visualized. In them, it was observed that by adding nano silica, the speed of hydration increases with increasing formation monosulfoaluminatos with scarce presence of ettringite. While in mixtures with addition of micro silica, ettringite crystals are observed, confirming that the hydration speed was lower in these mixtures. By studying the results of durability testing, it observed that no significant differences between the coefficient of migration of chlorides and coefficient of diffusion of chlorides in concretes with addition of nano or micro silica. Although this coefficient is slightly lower in mixtures with addition of micro silica. However, in binary mixtures of both additions was obtained values of coefficients of difusion o migration of chlorides lower than those obtained in mixtures with one of the additions. This is evidenced by the results of the tests electrical resistivity, diffusion of chlorides and migration of chlorides. This may be due to the sum of the effects that produced the nano and micro additions in the porosity. The result showed that nano silica has an important role in the pores refining and the micro silica decreases the total volume of them. This allows defining the life of these concretes in values to far exceed those required by the EHE-08, making it possible to reduce, significantly, the coating required in highly aggressive environment and to guarantee good behavior in service. Moreover, the mass loss due to freeze-thaw cycles is significantly lower in concretes containing nano silica than those containing micro silica. This result agrees with the capillary absorption test. In general, one can conclude that the binary mixture and more specifically the mixture with 5% of nano silica and 2.5% silica fume is which presents the best results in its durable behavior. This may be because in these mixtures, the nano silica behaves as cores activation of pozzolanic reactions. In addition, the durable extraordinary behavior may also be due to the continuity of the grading curve due to existence of micro silica, limestone filler, cement, sand and gravel with particle sizes that guarantees very compact mixtures which have high performance.