32 resultados para workload


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays patients admitted to critical care units have most of their physiological parameters measured automatically by sophisticated commercial monitoring devices. More often than not, these devices supervise whether the values of the parameters they measure lie within a pre-established range, and issue warning of deviations from this range by triggering alarms. The automation of measuring and supervising tasks not only discharges the healthcare staff of a considerable workload but also avoids human errors in these repetitive and monotonous tasks. Arguably, the most relevant physiological parameter that is still measured and supervised manually by critical care unit staff is urine output (UO). In this paper we present a patent-pending device that provides continuous and accurate measurements of patient’s UO. The device uses capacitive sensors to take continuous measurements of the height of the column of liquid accumulated in two chambers that make up a plastic container. The first chamber, where the urine inputs, has a small volume. Once it has been filled it overflows into a second bigger chamber. The first chamber provides accurate UO measures of patients whose UO has to be closely supervised, while the second one avoids the need for frequent interventions by the nursing staff to empty the container

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge resource reuse has become a popular approach within the ontology engineering field, mainly because it can speed up the ontology development process, saving time and money and promoting the application of good practices. The NeOn Methodology provides guidelines for reuse. These guidelines include the selection of the most appropriate knowledge resources for reuse in ontology development. This is a complex decision-making problem where different conflicting objectives, like the reuse cost, understandability, integration workload and reliability, have to be taken into account simultaneously. GMAA is a PC-based decision support system based on an additive multi-attribute utility model that is intended to allay the operational difficulties involved in the Decision Analysis methodology. The paper illustrates how it can be applied to select multimedia ontologies for reuse to develop a new ontology in the multimedia domain. It also demonstrates that the sensitivity analyses provided by GMAA are useful tools for making a final recommendation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-Performance Computing, Cloud computing and next-generation applications such e-Health or Smart Cities have dramatically increased the computational demand of Data Centers. The huge energy consumption, increasing levels of CO2 and the economic costs of these facilities represent a challenge for industry and researchers alike. Recent research trends propose the usage of holistic optimization techniques to jointly minimize Data Center computational and cooling costs from a multilevel perspective. This paper presents an analysis on the parameters needed to integrate the Data Center in a holistic optimization framework and leverages the usage of Cyber-Physical systems to gather workload, server and environmental data via software techniques and by deploying a non-intrusive Wireless Sensor Net- work (WSN). This solution tackles data sampling, retrieval and storage from a reconfigurable perspective, reducing the amount of data generated for optimization by a 68% without information loss, doubling the lifetime of the WSN nodes and allowing runtime energy minimization techniques in a real scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reducing the energy consumption for computation and cooling in servers is a major challenge considering the data center energy costs today. To ensure energy-efficient operation of servers in data centers, the relationship among computa- tional power, temperature, leakage, and cooling power needs to be analyzed. By means of an innovative setup that enables monitoring and controlling the computing and cooling power consumption separately on a commercial enterprise server, this paper studies temperature-leakage-energy tradeoffs, obtaining an empirical model for the leakage component. Using this model, we design a controller that continuously seeks and settles at the optimal fan speed to minimize the energy consumption for a given workload. We run a customized dynamic load-synthesis tool to stress the system. Our proposed cooling controller achieves up to 9% energy savings and 30W reduction in peak power in comparison to the default cooling control scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tecnología moderna de computación ha permitido cambiar radicalmente la investigación tecnológica en todos los ámbitos. El proceso general utilizado previamente consistía en el desarrollo de prototipos analógicos, creando múltiples versiones del mismo hasta llegar al resultado adecuado. Este es un proceso costoso a nivel económico y de carga de trabajo. Es por ello por lo que el proceso de investigación actual aprovecha las nuevas tecnologías para lograr el objetivo final mediante la simulación. Gracias al desarrollo de software para la simulación de distintas áreas se ha incrementado el ritmo de crecimiento de los avances tecnológicos y reducido el coste de los proyectos en investigación y desarrollo. La simulación, por tanto, permite desarrollar previamente prototipos simulados con un coste mucho menor para así lograr un producto final, el cual será llevado a cabo en su ámbito correspondiente. Este proceso no sólo se aplica en el caso de productos con circuitería, si bien es utilizado también en productos programados. Muchos de los programas actuales trabajan con algoritmos concretos cuyo funcionamiento debe ser comprobado previamente, para después centrarse en la codificación del mismo. Es en este punto donde se encuentra el objetivo de este proyecto, simular algoritmos de procesado digital de la señal antes de la codificación del programa final. Los sistemas de audio están basados en su totalidad en algoritmos de procesado de la señal, tanto analógicos como digitales, siendo estos últimos los que están sustituyendo al mundo analógico mediante los procesadores y los ordenadores. Estos algoritmos son la parte más compleja del sistema, y es la creación de nuevos algoritmos la base para lograr sistemas de audio novedosos y funcionales. Se debe destacar que los grupos de desarrollo de sistemas de audio presentan un amplio número de miembros con cometidos diferentes, separando las funciones de programadores e ingenieros de la señal de audio. Es por ello por lo que la simulación de estos algoritmos es fundamental a la hora de desarrollar nuevos y más potentes sistemas de audio. Matlab es una de las herramientas fundamentales para la simulación por ordenador, la cual presenta utilidades para desarrollar proyectos en distintos ámbitos. Sin embargo, en creciente uso actualmente se encuentra el software Simulink, herramienta especializada en la simulación de alto nivel que simplifica la dificultad de la programación en Matlab y permite desarrollar modelos de forma más rápida. Simulink presenta una completa funcionalidad para el desarrollo de algoritmos de procesado digital de audio. Por ello, el objetivo de este proyecto es el estudio de las capacidades de Simulink para generar sistemas de audio funcionales. A su vez, este proyecto pretende profundizar en los métodos de procesado digital de la señal de audio, logrando al final un paquete de sistemas de audio compatible con los programas de edición de audio actuales. ABSTRACT. Modern computer technology has dramatically changed the technological research in multiple areas. The overall process previously used consisted of the development of analog prototypes, creating multiple versions to reach the proper result. This is an expensive process in terms of an economically level and workload. For this reason actual investigation process take advantage of the new technologies to achieve the final objective through simulation. Thanks to the software development for simulation in different areas the growth rate of technological progress has been increased and the cost of research and development projects has been decreased. Hence, simulation allows previously the development of simulated protoypes with a much lower cost to obtain a final product, which will be held in its respective field. This process is not only applied in the case of circuitry products, but is also used in programmed products. Many current programs work with specific algorithms whose performance should be tested beforehand, which allows focusing on the codification of the program. This is the main point of this project, to simulate digital signal processing algorithms before the codification of the final program. Audio systems are entirely based on signal processing, both analog and digital systems, being the digital systems which are replacing the analog world thanks to the processors and computers. This algorithms are the most complex part of every system, and the creation of new algorithms is the most important step to achieve innovative and functional new audio systems. It should be noted that development groups of audio systems have a large number of members with different roles, separating them into programmers and audio signal engineers. For this reason, the simulation of this algorithms is essential when developing new and more powerful audio systems. Matlab is one of the most important tools for computer simulation, which has utilities to develop projects in different areas. However, the use of the Simulink software is constantly growing. It is a simulation tool specialized in high-level simulations which simplifies the difficulty of programming in Matlab and allows the developing of models faster. Simulink presents a full functionality for the development of algorithms for digital audio processing. Therefore, the objective of this project is to study the posibilities of Simulink to generate funcional audio systems. In turn, this projects aims to get deeper into the methods of digital audio signal processing, making at the end a software package of audio systems compatible with the current audio editing software.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the increasing sophistication of embedded multimedia systems and wireless communication technologies has promoted a widespread utilization of video streaming applications. It has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week watching online video through social media, business websites, and video streaming sites. Video applications have already been blended into people daily life. Traditionally, video streaming research has focused on performance improvement, namely throughput increase and response time reduction. However, most mobile devices are battery-powered, a technology that grows at a much slower pace than either multimedia or hardware developments. Since battery developments cannot satisfy expanding power demand of mobile devices, research interests on video applications technology has attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery energy budget becomes a major research challenge. In addition, next generation video standards impel to diversification and personalization. Therefore, it is desirable to have mechanisms to implement energy optimizations with greater flexibility and scalability. In this context, the main goal of this dissertation is to find an energy management and optimization mechanism to reduce the energy consumption of video decoders based on the idea of functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off between energy consumption and video quality. Functional-oriented reconfiguration takes advantage of the similarities among standards to build video decoders reconnecting existing functional units. If a feedback channel from the decoder to the encoder is available, the former can signal the latter changes in either the encoding parameters or the encoding algorithms for energy-saving adaption. The proposed energy optimization and management mechanism is carried out at the decoder end. This mechanism consists of an energy-aware manager, implemented as an additional block of the reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback channel connected to the encoder end. The energy-aware manager checks the battery level, selects the new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth noting that the analysis of the energy consumption is fundamental for the success of the energy management and optimization mechanism. In this thesis, an energy estimation method driven by platform event monitoring is proposed. In addition, an event filter is suggested to automate the selection of the most appropriate events that affect the energy consumption. At last, a detailed study on the influence of the training data on the model accuracy is presented. The modeling methodology of the energy estimator has been evaluated on different underlying platforms, single-core and multi-core, with different characteristics of workload. All the results show a good accuracy and low on-line computation overhead. The required modifications on the reconfiguration engine to implement the energy-aware manager have been assessed under different scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two different use-cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computational and cooling power demands of enterprise servers are increasing at an unsustainable rate. Understanding the relationship between computational power, temperature, leakage, and cooling power is crucial to enable energy-efficient operation at the server and data center levels. This paper develops empirical models to estimate the contributions of static and dynamic power consumption in enterprise servers for a wide range of workloads, and analyzes the interactions between temperature, leakage, and cooling power for various workload allocation policies. We propose a cooling management policy that minimizes the server energy consumption by setting the optimum fan speed during runtime. Our experimental results on a presently shipping enterprise server demonstrate that including leakage awareness in workload and cooling management provides additional energy savings without any impact on performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo consistió en el desarrollo de una intervención nutricional a largo plazo llevada a cabo con jugadores profesionales de baloncesto, en función al cumplimiento de las recomendaciones nutricionales, con los siguientes dos objetivos: 1) valorar los cambios que dicha intervención produce sobre las prácticas nutricionales diarias de estos deportistas y 2) conocer la influencia de las modificaciones nutricionales producidas sobre la tasa de percepción del esfuerzo por sesión (RPE-Sesión) y la fatiga, a lo largo de una temporada competitiva, tanto para entrenamientos como partidos oficiales. Los objetivos del estudio se fundamentan en: 1) la numerosa evidencia científica que muestra la inadecuación de los hábitos nutricionales de los jugadores de baloncesto y otros deportistas respecto a las recomendaciones nutricionales; 2) el hecho ampliamente reconocido en la literatura especializada de que una ingesta nutricional óptima permite maximizar el rendimiento deportivo (a nivel físico y cognitivo), promoviendo una rápida recuperación y disminuyendo el riesgo de enfermedades y lesiones deportivas. No obstante, pocos estudios han llevado a cabo una intervención nutricional a largo plazo para mejorar los hábitos alimentarios de los deportistas y ninguno de ellos fue realizado con jugadores de baloncesto; 3) la elevada correlación entre la percepción del esfuerzo (RPE) y variables fisiológicas relacionadas al desarrollo de un ejercicio (por ej.: frecuencia cardíaca, consumo máximo de oxígeno o lactato sanguíneo) y los múltiples estudios que muestran la atenuación de la RPE durante la realización del ejercicio mediante una ingesta puntual de nutrientes, (especialmente de hidratos de carbono) aunque ninguno fue desarrollado en baloncesto; 4) el estudio incipiente de la relación entre la ingesta nutricional y la RPE-Sesión, siendo éste un método validado en baloncesto y otros deportes de equipo como indicador de la carga de trabajo interna, el rendimiento deportivo y la intensidad del ejercicio realizado; 5) el hecho de que la fatiga constituye uno de los principales factores influyentes en la percepción del esfuerzo y puede ser retrasada y/o atenuada mediante la ingesta de carbohidratos, pudiendo disminuir consecuentemente la RPE-Sesión y la carga interna del esfuerzo físico, potenciando el rendimiento deportivo y las adaptaciones inducidas por el entrenamiento; 6) la reducida evidencia acerca del comportamiento de la RPE-Sesión ante la modificación de la ingesta de nutrientes, encontrándose sólo un estudio llevado a cabo en baloncesto y 7) la ausencia de investigaciones acerca de la influencia que puede tener la mejora del patrón nutricional de los jugadores sobre la RPE-Sesión y la fatiga, desconociéndose si la adecuación de los hábitos nutricionales conduce a una disminución de estas variables en el largo plazo para todos los entrenamientos y partidos oficiales a nivel profesional. Por todo esto, este trabajo comienza con una introducción que presenta el marco teórico de la importancia y función de la nutrición en el deporte, así como de las recomendaciones nutricionales actuales a nivel general y para baloncesto. Además, se describen las intervenciones nutricionales llevadas a cabo previamente con otros deportistas y las consecuentes modificaciones sobre el patrón alimentario, coincidiendo este aspecto con el primer objetivo del presente estudio. Posteriormente, se analiza la RPE, la RPE-Sesión y la fatiga, focalizando el estudio en la relación de dichas variables con la carga de trabajo físico, la intensidad del entrenamiento, el rendimiento deportivo y la recuperación post ejercicio. Finalmente, se combinan todos los aspectos mencionados: ingesta nutricional, RPE percepción del esfuerzo y fatiga, con el fin de conocer la situación actual del estudio de la relación entre dichas variables, conformando la base del segundo objetivo de este estudio. Seguidamente, se exponen y fundamentan los objetivos antes mencionados, para dar lugar después a la explicación de la metodología utilizada en el presente estudio. Ésta consistió en un diseño de estudios de caso, aplicándose una intervención nutricional personalizada a tres jugadores de baloncesto profesional (cada jugador = un estudio de caso; n = 1), con el objetivo de adecuar su ingesta nutricional en el largo plazo a las recomendaciones nutricionales. A su vez, se analizó la respuesta individual de cada uno de los casos a dicha intervención para los dos objetivos del estudio. Para ello, cada jugador completó un registro diario de alimentos (7 días; pesada de alimentos) antes, durante y al final de la intervención. Además, los sujetos registraron diariamente a lo largo del estudio la RPE-Sesión y la fatiga en entrenamientos físicos y de balón y en partidos oficiales de liga, controlándose además en forma cuantitativa otras variables influyentes como el estado de ánimo y el sueño. El análisis de los datos consistió en el cálculo de los estadísticos descriptivos para todas las variables, la comparación de la ingesta en los diferentes momentos evaluados con las recomendaciones nutricionales y una comparación de medias no paramétrica entre el período pre intervención y durante la intervención con el test de Wilcoxon (medidas repetidas) para todas las variables. Finalmente, se relacionaron los cambios obtenidos en la ingesta nutricional con la percepción del esfuerzo y la fatiga y la posible influencia del estado de ánimo y el sueño, a través de un estudio correlacional (Tau_b de Kendall). Posteriormente, se presentan los resultados obtenidos y la discusión de los mismos, haciendo referencia a la evidencia científica relacionada que se encuentra publicada hasta el momento, la cual facilitó el análisis de la relación entre RPE-Sesión, fatiga y nutrición a lo largo de una temporada. Los principales hallazgos y su correspondiente análisis, por lo tanto, pueden resumirse en los siguientes: 1) los tres jugadores de baloncesto profesional presentaron inicialmente hábitos nutricionales inadecuados, haciendo evidente la necesidad de un nutricionista deportivo dentro del cuerpo técnico de los equipos profesionales; 2) las principales deficiencias correspondieron a un déficit pronunciado de energía e hidratos de carbono, que fueron reducidas con la intervención nutricional; 3) la ingesta excesiva de grasa total, ácidos grasos saturados, etanol y proteínas que se halló en alguno/s de los casos, también se adecuó a las recomendaciones después de la intervención; 4) la media obtenida durante un período de la temporada para la RPE-Sesión y la fatiga de entrenamientos, podría ser disminuida en un jugador individual mediante el incremento de su ingesta de carbohidratos a largo plazo, siempre que no existan alteraciones psico-emocionales relevantes; 5) el comportamiento de la RPE-Sesión de partidos oficiales no parece estar influido por los factores nutricionales modificados en este estudio, dependiendo más de la variación de elementos externos no controlables, intrínsecos a los partidos de baloncesto profesional. Ante estos resultados, se pudo observar que las diferentes características de los jugadores y las distintas respuestas obtenidas después de la intervención, reforzaron la importancia de utilizar un diseño de estudio de casos para el análisis de los deportistas de élite y, asimismo, de realizar un asesoramiento nutricional personalizado. Del mismo modo, la percepción del esfuerzo y la fatiga de cada jugador evolucionaron de manera diferente después de la intervención nutricional, lo cual podría depender de las diferentes características de los sujetos, a nivel físico, psico-social, emocional y contextual. Por ello, se propone que el control riguroso de las variables cualitativas que parecen influir sobre la RPE y la fatiga a largo plazo, facilitaría la comprensión de los datos y la determinación de factores desconocidos que influyen sobre estas variables. Finalmente, al ser la RPE-Sesión un indicador directo de la carga interna del entrenamiento, es decir, del estrés psico-fisiológico experimentado por el deportista, la posible atenuación de esta variable mediante la adecuación de los hábitos nutricionales, permitiría aplicar las cargas externas de entrenamiento planificadas, con menor estrés interno y mejor recuperación entre sesiones, disminuyendo también la sensación de fatiga, a pesar del avance de la temporada. ABSTRACT This study consisted in a long-term nutritional intervention carried out with professional basketball players according to nutritional recommendations, with the following two main objectives: 1) to evaluate the changes produced by the intervention on daily nutritional practices of these athletes and 2) to determine the influence of long term nutritional intake modifications on the rate of perceived exertion per session (Session-RPE) and fatigue, throughout a competitive season for training as well as competition games. These objectives are based on: 1) much scientific evidence that shows an inadequacy of the nutritional habits of basketball players and other athletes regarding nutritional recommendations; 2) the fact widely recognized in the scientific literature that an optimal nutrition allows to achieve the maximum performance of an athlete (both physically and cognitively), promoting fast recovery and decreasing risks of sports injuries and illnesses. However, only few studies carried out a long term nutritional intervention to improve nutritional practices of athletes and it could not be found any research with basketball players; 3) the high correlation between the rate of perceived exertion (RPE) and physiological variables related to the performance of physical exercise (e.g.: heart rate, maximum consumption of oxygen or blood lactate) and multiple studies showing the attenuation of RPE during exercise due to the intake of certain nutrients (especially carbohydrates), while none of them was developed in basketball; 4) correlation between nutritional intake and Session-RPE has been recently studied for the first time. Session-RPE method has been validated in basketball players and other team sports as an indicator of internal workload, sports performance and exercise intensity; 5) fatigue is considered one of the main influential factor on RPE and sport performance. It has also been observed that carbohydrates intake may delay or mitigate the onset of fatigue and, thus, decrease the perceived exertion and the internal training load, which could improve sports performance and training-induced adaptations; 6) there are few studies evaluating the influence of nutrient intake on Session-RPE and only one of them has been carried out with basketball players. Moreover, it has not been analyzed the possible effects of the adequacy of players’ nutritional habits through a nutritional intervention on Session-RPE and fatigue, variables that could be decreased for all training session and competition games because of an improvement of daily nutritional intake. Therefore, this work begins with an introduction that provides the conceptual framework of this research focused on the key role of nutrition in sport, as well as on the current nutritional recommendations for athletes and specifically for basketball players. In addition, previous nutritional interventions carried out with other athletes are described, as well as consequential modifications on their food pattern, coinciding with the first objective of the present study. Subsequently, RPE, Session-RPE and fatigue are analyzed, with focus on their correlation with physical workload, training intensity, sports performance and recovery. Finally, all the aforementioned aspects (nutritional intake, RPE and fatigue) were combined in order to know the current status of the relation between each other, this being the base for the second objective of this study. Subsequently, the objectives mentioned above are explained, continuing with the explanation of the methodology used in the study. The methodology consisted of a case-study design, carrying out a long term nutritional intervention with three professional basketball players (each player = one case study; n = 1), in order to adapt their nutritional intake to nutritional recommendations. At the same time, the individual response of each player to the intervention was analyzed for the two main objectives of the study. Each player completed a food diary (7 days; weighing food) in three moments: before, during and at the end of the intervention. In addition, the Session-RPE and fatigue were daily recorded throughout the study for all trainings (training with ball and resistance training) and competition games. At the same time, other potentially influential variables such as mood state and sleeping were daily controlled throughout the study. Data analysis consisted in descriptive statistics calculation for all the variables of the study, the comparison between nutritional intake (evaluated at different times) and nutritional recommendations and a non-parametric mean comparison between pre intervention and during intervention periods was made by Wilcoxon test (repeated measurements) for all variables too. Finally, the changes in nutritional intake, mood state and sleeping were correlated with the perceived exertion and fatigue through correctional study (Tau_b de Kendall). After the methodology, the study results and the associated discussion are presented. The discussion is based on the current scientific evidence that contributes to understand the relation between Session-RPE, fatigue and nutrition throughout the competitive season. The main findings and results analysis can be summarized as follows: 1) the three professional basketball players initially had inadequate nutritional habits and this clearly shows the need of a sports nutritionist in the coaching staff of professional teams; (2) the major deficiencies of the three players’ diet corresponded to a pronounced deficit of energy intake and carbohydrates consumption which were reduced with nutritional intervention; (3) the excessive intake of total fat, saturated fatty acids, ethanol and protein found in some cases were also adapted to the recommendations after the intervention; (4) Session-RPE mean and fatigue of a certain period of the competition season, could be decreased in an individual player by increasing his carbohydrates intake in the long term, if there are no relevant psycho-emotional disorders; (5) the behavior of the Session-RPE in competition games does not seem to be influenced by the nutritional factors modified in this study. They seem to depend much more on the variation of external non-controllable factors associated with the professional basketball games. Given these results, the different characteristics of each player and the diverse responses observed after the intervention in each individual for all the variables, reinforced the importance of the use of a case study design for research with elite athletes as well as personalized nutritional counselling. In the same way, the different responses obtained for RPE and fatigue in the long term for each player due to modification of nutritional habits, show that there is a dependence of such variables on the physical, psychosocial, emotional and contextual characteristics of each player. Therefore it is proposed that the rigorous control of the qualitative variables that seem to influence the RPE and fatigue in the long term, may facilitate the understanding of data and the determination of unknown factors that could influence these variables. Finally, because Session-RPE is a direct indicator of the internal load of training (psycho-physiological stress experienced by the athlete), the possible attenuation of Session-RPE through the improvement in nutritional habits, would allow to apply the planned external loads of training with less internal stress and better recovery between sessions, with a decrease in fatigue, despite of the advance of the season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El uso de técnicas para la monitorización del movimiento humano generalmente permite a los investigadores analizar la cinemática y especialmente las capacidades motoras en aquellas actividades de la vida cotidiana que persiguen un objetivo concreto como pueden ser la preparación de bebidas y comida, e incluso en tareas de aseo. Adicionalmente, la evaluación del movimiento y el comportamiento humanos en el campo de la rehabilitación cognitiva es esencial para profundizar en las dificultades que algunas personas encuentran en la ejecución de actividades diarias después de accidentes cerebro-vasculares. Estas dificultades están principalmente asociadas a la realización de pasos secuenciales y al reconocimiento del uso de herramientas y objetos. La interpretación de los datos sobre la actitud de este tipo de pacientes para reconocer y determinar el nivel de éxito en la ejecución de las acciones, y para ampliar el conocimiento en las enfermedades cerebrales, sus consecuencias y severidad, depende totalmente de los dispositivos usados para la captura de esos datos y de la calidad de los mismos. Más aún, existe una necesidad real de mejorar las técnicas actuales de rehabilitación cognitiva contribuyendo al diseño de sistemas automáticos para crear una especie de terapeuta virtual que asegure una vida más independiente de estos pacientes y reduzca la carga de trabajo de los terapeutas. Con este objetivo, el uso de sensores y dispositivos para obtener datos en tiempo real de la ejecución y estado de la tarea de rehabilitación es esencial para también contribuir al diseño y entrenamiento de futuros algoritmos que pudieran reconocer errores automáticamente para informar al paciente acerca de ellos mediante distintos tipos de pistas como pueden ser imágenes, mensajes auditivos o incluso videos. La tecnología y soluciones existentes en este campo no ofrecen una manera totalmente robusta y efectiva para obtener datos en tiempo real, por un lado, porque pueden influir en el movimiento del propio paciente en caso de las plataformas basadas en el uso de marcadores que necesitan sensores pegados en la piel; y por otro lado, debido a la complejidad o alto coste de implantación lo que hace difícil pensar en la idea de instalar un sistema en el hospital o incluso en la casa del paciente. Esta tesis presenta la investigación realizada en el campo de la monitorización del movimiento de pacientes para proporcionar un paso adelante en términos de detección, seguimiento y reconocimiento del comportamiento de manos, gestos y cara mediante una manera no invasiva la cual puede mejorar la técnicas actuales de rehabilitación cognitiva para la adquisición en tiempo real de datos sobre el comportamiento del paciente y la ejecución de la tarea. Para entender la importancia del marco de esta tesis, inicialmente se presenta un resumen de las principales enfermedades cognitivas y se introducen las consecuencias que tienen en la ejecución de tareas de la vida diaria. Más aún, se investiga sobre las metodologías actuales de rehabilitación cognitiva. Teniendo en cuenta que las manos son la principal parte del cuerpo para la ejecución de tareas manuales de la vida cotidiana, también se resumen las tecnologías existentes para la captura de movimiento de manos. Una de las principales contribuciones de esta tesis está relacionada con el diseño y evaluación de una solución no invasiva para detectar y seguir las manos durante la ejecución de tareas manuales de la vida cotidiana que a su vez involucran la manipulación de objetos. Esta solución la cual no necesita marcadores adicionales y está basada en una cámara de profundidad de bajo coste, es robusta, precisa y fácil de instalar. Otra contribución presentada se centra en el reconocimiento de gestos para detectar el agarre de objetos basado en un sensor infrarrojo de última generación, y también complementado con una cámara de profundidad. Esta nueva técnica, y también no invasiva, sincroniza ambos sensores para seguir objetos específicos además de reconocer eventos concretos relacionados con tareas de aseo. Más aún, se realiza una evaluación preliminar del reconocimiento de expresiones faciales para analizar si es adecuado para el reconocimiento del estado de ánimo durante la tarea. Por su parte, todos los componentes y algoritmos desarrollados son integrados en un prototipo simple para ser usado como plataforma de monitorización. Se realiza una evaluación técnica del funcionamiento de cada dispositivo para analizar si es adecuada para adquirir datos en tiempo real durante la ejecución de tareas cotidianas reales. Finalmente, se estudia la interacción con pacientes reales para obtener información del nivel de usabilidad del prototipo. Dicha información es esencial y útil para considerar una rehabilitación cognitiva basada en la idea de instalación del sistema en la propia casa del paciente al igual que en el hospital correspondiente. ABSTRACT The use of human motion monitoring techniques usually let researchers to analyse kinematics, especially in motor strategies for goal-oriented activities of daily living, such as the preparation of drinks and food, and even grooming tasks. Additionally, the evaluation of human movements and behaviour in the field of cognitive rehabilitation is essential to deep into the difficulties some people find in common activities after stroke. This difficulties are mainly associated with sequence actions and the recognition of tools usage. The interpretation of attitude data of this kind of patients in order to recognize and determine the level of success of the execution of actions, and to broaden the knowledge in brain diseases, consequences and severity, depends totally on the devices used for the capture of that data and the quality of it. Moreover, there is a real need of improving the current cognitive rehabilitation techniques by contributing to the design of automatic systems to create a kind of virtual therapist for the improvement of the independent life of these stroke patients and to reduce the workload of the occupational therapists currently in charge of them. For this purpose, the use of sensors and devices to obtain real time data of the execution and state of the rehabilitation task is essential to also contribute to the design and training of future smart algorithms which may recognise errors to automatically provide multimodal feedback through different types of cues such as still images, auditory messages or even videos. The technology and solutions currently adopted in the field don't offer a totally robust and effective way for obtaining real time data, on the one hand, because they may influence the patient's movement in case of marker-based platforms which need sensors attached to the skin; and on the other hand, because of the complexity or high cost of implementation, which make difficult the idea of installing a system at the hospital or even patient's home. This thesis presents the research done in the field of user monitoring to provide a step forward in terms of detection, tracking and recognition of hand movements, gestures and face via a non-invasive way which could improve current techniques for cognitive rehabilitation for real time data acquisition of patient's behaviour and execution of the task. In order to understand the importance of the scope of the thesis, initially, a summary of the main cognitive diseases that require for rehabilitation and an introduction of the consequences on the execution of daily tasks are presented. Moreover, research is done about the actual methodology to provide cognitive rehabilitation. Considering that the main body members involved in the completion of a handmade daily task are the hands, the current technologies for human hands movements capture are also highlighted. One of the main contributions of this thesis is related to the design and evaluation of a non-invasive approach to detect and track user's hands during the execution of handmade activities of daily living which involve the manipulation of objects. This approach does not need the inclusion of any additional markers. In addition, it is only based on a low-cost depth camera, it is robust, accurate and easy to install. Another contribution presented is focused on the hand gesture recognition for detecting object grasping based on a brand new infrared sensor, and also complemented with a depth camera. This new, and also non-invasive, solution which synchronizes both sensors to track specific tools as well as recognize specific events related to grooming is evaluated. Moreover, a preliminary assessment of the recognition of facial expressions is carried out to analyse if it is adequate for recognizing mood during the execution of task. Meanwhile, all the corresponding hardware and software developed are integrated in a simple prototype with the purpose of being used as a platform for monitoring the execution of the rehabilitation task. Technical evaluation of the performance of each device is carried out in order to analyze its suitability to acquire real time data during the execution of real daily tasks. Finally, a kind of healthcare evaluation is also presented to obtain feedback about the usability of the system proposed paying special attention to the interaction with real users and stroke patients. This feedback is quite useful to consider the idea of a home-based cognitive rehabilitation as well as a possible hospital installation of the prototype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los Centros de Datos se encuentran actualmente en cualquier sector de la economía mundial. Están compuestos por miles de servidores, dando servicio a los usuarios de forma global, las 24 horas del día y los 365 días del año. Durante los últimos años, las aplicaciones del ámbito de la e-Ciencia, como la e-Salud o las Ciudades Inteligentes han experimentado un desarrollo muy significativo. La necesidad de manejar de forma eficiente las necesidades de cómputo de aplicaciones de nueva generación, junto con la creciente demanda de recursos en aplicaciones tradicionales, han facilitado el rápido crecimiento y la proliferación de los Centros de Datos. El principal inconveniente de este aumento de capacidad ha sido el rápido y dramático incremento del consumo energético de estas infraestructuras. En 2010, la factura eléctrica de los Centros de Datos representaba el 1.3% del consumo eléctrico mundial. Sólo en el año 2012, el consumo de potencia de los Centros de Datos creció un 63%, alcanzando los 38GW. En 2013 se estimó un crecimiento de otro 17%, hasta llegar a los 43GW. Además, los Centros de Datos son responsables de más del 2% del total de emisiones de dióxido de carbono a la atmósfera. Esta tesis doctoral se enfrenta al problema energético proponiendo técnicas proactivas y reactivas conscientes de la temperatura y de la energía, que contribuyen a tener Centros de Datos más eficientes. Este trabajo desarrolla modelos de energía y utiliza el conocimiento sobre la demanda energética de la carga de trabajo a ejecutar y de los recursos de computación y refrigeración del Centro de Datos para optimizar el consumo. Además, los Centros de Datos son considerados como un elemento crucial dentro del marco de la aplicación ejecutada, optimizando no sólo el consumo del Centro de Datos sino el consumo energético global de la aplicación. Los principales componentes del consumo en los Centros de Datos son la potencia de computación utilizada por los equipos de IT, y la refrigeración necesaria para mantener los servidores dentro de un rango de temperatura de trabajo que asegure su correcto funcionamiento. Debido a la relación cúbica entre la velocidad de los ventiladores y el consumo de los mismos, las soluciones basadas en el sobre-aprovisionamiento de aire frío al servidor generalmente tienen como resultado ineficiencias energéticas. Por otro lado, temperaturas más elevadas en el procesador llevan a un consumo de fugas mayor, debido a la relación exponencial del consumo de fugas con la temperatura. Además, las características de la carga de trabajo y las políticas de asignación de recursos tienen un impacto importante en los balances entre corriente de fugas y consumo de refrigeración. La primera gran contribución de este trabajo es el desarrollo de modelos de potencia y temperatura que permiten describes estos balances entre corriente de fugas y refrigeración; así como la propuesta de estrategias para minimizar el consumo del servidor por medio de la asignación conjunta de refrigeración y carga desde una perspectiva multivariable. Cuando escalamos a nivel del Centro de Datos, observamos un comportamiento similar en términos del balance entre corrientes de fugas y refrigeración. Conforme aumenta la temperatura de la sala, mejora la eficiencia de la refrigeración. Sin embargo, este incremente de la temperatura de sala provoca un aumento en la temperatura de la CPU y, por tanto, también del consumo de fugas. Además, la dinámica de la sala tiene un comportamiento muy desigual, no equilibrado, debido a la asignación de carga y a la heterogeneidad en el equipamiento de IT. La segunda contribución de esta tesis es la propuesta de técnicas de asigación conscientes de la temperatura y heterogeneidad que permiten optimizar conjuntamente la asignación de tareas y refrigeración a los servidores. Estas estrategias necesitan estar respaldadas por modelos flexibles, que puedan trabajar en tiempo real, para describir el sistema desde un nivel de abstracción alto. Dentro del ámbito de las aplicaciones de nueva generación, las decisiones tomadas en el nivel de aplicación pueden tener un impacto dramático en el consumo energético de niveles de abstracción menores, como por ejemplo, en el Centro de Datos. Es importante considerar las relaciones entre todos los agentes computacionales implicados en el problema, de forma que puedan cooperar para conseguir el objetivo común de reducir el coste energético global del sistema. La tercera contribución de esta tesis es el desarrollo de optimizaciones energéticas para la aplicación global por medio de la evaluación de los costes de ejecutar parte del procesado necesario en otros niveles de abstracción, que van desde los nodos hasta el Centro de Datos, por medio de técnicas de balanceo de carga. Como resumen, el trabajo presentado en esta tesis lleva a cabo contribuciones en el modelado y optimización consciente del consumo por fugas y la refrigeración de servidores; el modelado de los Centros de Datos y el desarrollo de políticas de asignación conscientes de la heterogeneidad; y desarrolla mecanismos para la optimización energética de aplicaciones de nueva generación desde varios niveles de abstracción. ABSTRACT Data centers are easily found in every sector of the worldwide economy. They consist of tens of thousands of servers, serving millions of users globally and 24-7. In the last years, e-Science applications such e-Health or Smart Cities have experienced a significant development. The need to deal efficiently with the computational needs of next-generation applications together with the increasing demand for higher resources in traditional applications has facilitated the rapid proliferation and growing of data centers. A drawback to this capacity growth has been the rapid increase of the energy consumption of these facilities. In 2010, data center electricity represented 1.3% of all the electricity use in the world. In year 2012 alone, global data center power demand grew 63% to 38GW. A further rise of 17% to 43GW was estimated in 2013. Moreover, data centers are responsible for more than 2% of total carbon dioxide emissions. This PhD Thesis addresses the energy challenge by proposing proactive and reactive thermal and energy-aware optimization techniques that contribute to place data centers on a more scalable curve. This work develops energy models and uses the knowledge about the energy demand of the workload to be executed and the computational and cooling resources available at data center to optimize energy consumption. Moreover, data centers are considered as a crucial element within their application framework, optimizing not only the energy consumption of the facility, but the global energy consumption of the application. The main contributors to the energy consumption in a data center are the computing power drawn by IT equipment and the cooling power needed to keep the servers within a certain temperature range that ensures safe operation. Because of the cubic relation of fan power with fan speed, solutions based on over-provisioning cold air into the server usually lead to inefficiencies. On the other hand, higher chip temperatures lead to higher leakage power because of the exponential dependence of leakage on temperature. Moreover, workload characteristics as well as allocation policies also have an important impact on the leakage-cooling tradeoffs. The first key contribution of this work is the development of power and temperature models that accurately describe the leakage-cooling tradeoffs at the server level, and the proposal of strategies to minimize server energy via joint cooling and workload management from a multivariate perspective. When scaling to the data center level, a similar behavior in terms of leakage-temperature tradeoffs can be observed. As room temperature raises, the efficiency of data room cooling units improves. However, as we increase room temperature, CPU temperature raises and so does leakage power. Moreover, the thermal dynamics of a data room exhibit unbalanced patterns due to both the workload allocation and the heterogeneity of computing equipment. The second main contribution is the proposal of thermal- and heterogeneity-aware workload management techniques that jointly optimize the allocation of computation and cooling to servers. These strategies need to be backed up by flexible room level models, able to work on runtime, that describe the system from a high level perspective. Within the framework of next-generation applications, decisions taken at this scope can have a dramatical impact on the energy consumption of lower abstraction levels, i.e. the data center facility. It is important to consider the relationships between all the computational agents involved in the problem, so that they can cooperate to achieve the common goal of reducing energy in the overall system. The third main contribution is the energy optimization of the overall application by evaluating the energy costs of performing part of the processing in any of the different abstraction layers, from the node to the data center, via workload management and off-loading techniques. In summary, the work presented in this PhD Thesis, makes contributions on leakage and cooling aware server modeling and optimization, data center thermal modeling and heterogeneityaware data center resource allocation, and develops mechanisms for the energy optimization for next-generation applications from a multi-layer perspective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La calidad es uno de los principales retos de la construcción de software. En la Ingeniería del Software (IS) se considera a la usabilidad como un atributo de calidad. Al principio se veía a la usabilidad como un requisito no funcional.Se asumía que la usabilidad era una propiedad exclusiva de la presentación de la información.Se creía que separando la capa de presentación del resto, se podía desarrollar un producto software usable.Debido a la naturaleza del sistema y a las necesidades del usuario, a menudo se debe ir más lejos y no basta con tener en cuenta la presentación para obtener un software usable. La comunidad de la Interacción Personar Ordenador (IPO) ha propuesto recomendaciones para mejorar la usabilidad. Algunas de esas recomendaciones tienen impacto directo en la funcionalidad del producto software. En estudios recientes también se ha evaluado la relación entre la usabilidad y los requisitos funcionales. Estas investigaciones sugieren que la usabilidad debe ser tenida en cuenta desde las etapas iniciales de la construcción para evitar costosos cambios posteriores. La incorporación de las características de usabilidad agrega cierta complejidad al proceso de desarrollo. El presente trabajo evalúa la posibilidad de usar patrones para la incorporación de usabilidad en el desarrollo de un producto software. Concretamente se evalúan los siguientes patrones de programación de usabilidad (PPUs): Abort Operation,Progress Feedback y Preferences. Se utilizan unas Pautas de Desarrollo de Mecanismos de Usabilidad(PDMUs) para estos tres mecanismos de usabilidad. Estas pautas poponen patrones para la educción y posterior incorporación de la usabilidad en las distintas fases de la programación. En esta investigación se aborda el desarrollo de un producto software desde la deducción de requisitos hasta la implementación. En cada fase se incorporan los mecanismos de usabilidad de acuerdo a las recomendaciones de las PDMUs. Mediante el desarrollo de un software real se ha evaluado la factibilidad del uso de las PDMUs obteniendo como resultado propuestas de mejoras en estas pautas. Se evalúa asimismo el esfuerzo de incorporación de los mecanismos de usabilidad. Cada evaluación aporta datos que proporcionan una estimación del esfuerzo adicional requerido para incorporar cada mecanismo de usabilidad en el proceso de desarrollo del software.---ABSTRACT---Quality is a major challenge in software construction. Software engineers consider usability to be a quality attribute. Originally, usability was viewed as a nonr functional requirement. Usability was assumed to be simply an information presentation property. There was a belief that a usable software product could be developed by separating the presentation layer from the rest of the system. Depending on the system type and user needs, however, usability often runs deeper, and it is not enough to consider just presentation to build usable software. The humanrcomputer interaction (HCI) community put forward a list of recommendations to improve usability. Some such recommendations have a direct impact on software product functionality. Recent studies have also evaluated the relationship between usability and functional requirements. This research suggests that usability should be taken into account as of the early stages of software construction to prevent costly rework later on. The inclusion of usability features is an added complication to the development process. The research reported here evaluates the possibility of using patterns to incorporate usability into a software product. Specifically, it evaluates the following usability programming patterns (UPPs): Abort Operation, Progress Feedback and Preferences. Usability Mechanism Development Guides (USDG) are applied to these three usability mechanisms. These guides propose patterns for eliciting and later incorporating usability into the different software development phases, including programming. The reported research addresses the development of a software product from requirements elicitation through to implementation. Usability mechanisms are incorporated into each development phase in accordance with USDG recommendations. A real piece of software was developed to test the feasibility of using USDGs, outputting proposals for improving the guides. Each evaluation yields data providing an estimate of the additional workload required to incorporate each usability mechanism into the software development process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La investigación de esta tesis se centra en el estudio de técnicas geoestadísticas y su contribución a una mayor caracterización del binomio factores climáticos-rendimiento de un cultivo agrícola. El inexorable vínculo entre la variabilidad climática y la producción agrícola cobra especial relevancia en estudios sobre el cambio climático o en la modelización de cultivos para dar respuesta a escenarios futuros de producción mundial. Es información especialmente valiosa en sistemas operacionales de monitoreo y predicción de rendimientos de cultivos Los cuales son actualmente uno de los pilares operacionales en los que se sustenta la agricultura y seguridad alimentaria mundial; ya que su objetivo final es el de proporcionar información imparcial y fiable para la regularización de mercados. Es en este contexto, donde se quiso dar un enfoque alternativo a estudios, que con distintos planteamientos, analizan la relación inter-anual clima vs producción. Así, se sustituyó la dimensión tiempo por la espacio, re-orientando el análisis estadístico de correlación interanual entre rendimiento y factores climáticos, por el estudio de la correlación inter-regional entre ambas variables. Se utilizó para ello una técnica estadística relativamente nueva y no muy aplicada en investigaciones similares, llamada regresión ponderada geográficamente (GWR, siglas en inglés de “Geographically weighted regression”). Se obtuvieron superficies continuas de las variables climáticas acumuladas en determinados periodos fenológicos, que fueron seleccionados por ser factores clave en el desarrollo vegetativo de un cultivo. Por ello, la primera parte de la tesis, consistió en un análisis exploratorio sobre comparación de Métodos de Interpolación Espacial (MIE). Partiendo de la hipótesis de que existe la variabilidad espacial de la relación entre factores climáticos y rendimiento, el objetivo principal de esta tesis, fue el de establecer en qué medida los MIE y otros métodos geoestadísticos de regresión local, pueden ayudar por un lado, a alcanzar un mayor entendimiento del binomio clima-rendimiento del trigo blando (Triticum aestivum L.) al incorporar en dicha relación el componente espacial; y por otro, a caracterizar la variación de los principales factores climáticos limitantes en el crecimiento del trigo blando, acumulados éstos en cuatro periodos fenológicos. Para lleva a cabo esto, una gran carga operacional en la investigación de la tesis consistió en homogeneizar y hacer los datos fenológicos, climáticos y estadísticas agrícolas comparables tanto a escala espacial como a escala temporal. Para España y los Bálticos se recolectaron y calcularon datos diarios de precipitación, temperatura máxima y mínima, evapotranspiración y radiación solar en las estaciones meteorológicas disponibles. Se dispuso de una serie temporal que coincidía con los mismos años recolectados en las estadísticas agrícolas, es decir, 14 años contados desde 2000 a 2013 (hasta 2011 en los Bálticos). Se superpuso la malla de información fenológica de cuadrícula 25 km con la ubicación de las estaciones meteorológicas con el fin de conocer los valores fenológicos en cada una de las estaciones disponibles. Hecho esto, para cada año de la serie temporal disponible se calcularon los valores climáticos diarios acumulados en cada uno de los cuatro periodos fenológicos seleccionados P1 (ciclo completo), P2 (emergencia-madurez), P3 (floración) y P4 (floraciónmadurez). Se calculó la superficie interpolada por el conjunto de métodos seleccionados en la comparación: técnicas deterministas convencionales, kriging ordinario y cokriging ordinario ponderado por la altitud. Seleccionados los métodos más eficaces, se calculó a nivel de provincias las variables climatológicas interpoladas. Y se realizaron las regresiones locales GWR para cuantificar, explorar y modelar las relaciones espaciales entre el rendimiento del trigo y las variables climáticas acumuladas en los cuatro periodos fenológicos. Al comparar la eficiencia de los MIE no destaca una técnica por encima del resto como la que proporcione el menor error en su predicción. Ahora bien, considerando los tres indicadores de calidad de los MIE estudiados se han identificado los métodos más efectivos. En el caso de la precipitación, es la técnica geoestadística cokriging la más idónea en la mayoría de los casos. De manera unánime, la interpolación determinista en función radial (spline regularizado) fue la técnica que mejor describía la superficie de precipitación acumulada en los cuatro periodos fenológicos. Los resultados son más heterogéneos para la evapotranspiración y radiación. Los métodos idóneos para estas se reparten entre el Inverse Distance Weighting (IDW), IDW ponderado por la altitud y el Ordinary Kriging (OK). También, se identificó que para la mayoría de los casos en que el error del Ordinary CoKriging (COK) era mayor que el del OK su eficacia es comparable a la del OK en términos de error y el requerimiento computacional de este último es mucho menor. Se pudo confirmar que existe la variabilidad espacial inter-regional entre factores climáticos y el rendimiento del trigo blando tanto en España como en los Bálticos. La herramienta estadística GWR fue capaz de reproducir esta variabilidad con un rendimiento lo suficientemente significativo como para considerarla una herramienta válida en futuros estudios. No obstante, se identificaron ciertas limitaciones en la misma respecto a la información que devuelve el programa a nivel local y que no permite desgranar todo el detalle sobre la ejecución del mismo. Los indicadores y periodos fenológicos que mejor pudieron reproducir la variabilidad espacial del rendimiento en España y Bálticos, arrojaron aún, una mayor credibilidad a los resultados obtenidos y a la eficacia del GWR, ya que estaban en línea con el conocimiento agronómico sobre el cultivo del trigo blando en sistemas agrícolas mediterráneos y norteuropeos. Así, en España, el indicador más robusto fue el balance climático hídrico Climatic Water Balance) acumulado éste, durante el periodo de crecimiento (entre la emergencia y madurez). Aunque se identificó la etapa clave de la floración como el periodo en el que las variables climáticas acumuladas proporcionaban un mayor poder explicativo del modelo GWR. Sin embargo, en los Bálticos, países donde el principal factor limitante en su agricultura es el bajo número de días de crecimiento efectivo, el indicador más efectivo fue la radiación acumulada a lo largo de todo el ciclo de crecimiento (entre la emergencia y madurez). Para el trigo en regadío no existe ninguna combinación que pueda explicar más allá del 30% de la variación del rendimiento en España. Poder demostrar que existe un comportamiento heterogéneo en la relación inter-regional entre el rendimiento y principales variables climáticas, podría contribuir a uno de los mayores desafíos a los que se enfrentan, a día de hoy, los sistemas operacionales de monitoreo y predicción de rendimientos de cultivos, y éste es el de poder reducir la escala espacial de predicción, de un nivel nacional a otro regional. ABSTRACT This thesis explores geostatistical techniques and their contribution to a better characterization of the relationship between climate factors and agricultural crop yields. The crucial link between climate variability and crop production plays a key role in climate change research as well as in crops modelling towards the future global production scenarios. This information is particularly important for monitoring and forecasting operational crop systems. These geostatistical techniques are currently one of the most fundamental operational systems on which global agriculture and food security rely on; with the final aim of providing neutral and reliable information for food market controls, thus avoiding financial speculation of nourishments of primary necessity. Within this context the present thesis aims to provide an alternative approach to the existing body of research examining the relationship between inter-annual climate and production. Therefore, the temporal dimension was replaced for the spatial dimension, re-orienting the statistical analysis of the inter-annual relationship between crops yields and climate factors to an inter-regional correlation between these two variables. Geographically weighted regression, which is a relatively new statistical technique and which has rarely been used in previous research on this topic was used in the current study. Continuous surface values of the climate accumulated variables in specific phenological periods were obtained. These specific periods were selected because they are key factors in the development of vegetative crop. Therefore, the first part of this thesis presents an exploratory analysis regarding the comparability of spatial interpolation methods (SIM) among diverse SIMs and alternative geostatistical methodologies. Given the premise that spatial variability of the relationship between climate factors and crop production exists, the primary aim of this thesis was to examine the extent to which the SIM and other geostatistical methods of local regression (which are integrated tools of the GIS software) are useful in relating crop production and climate variables. The usefulness of these methods was examined in two ways; on one hand the way this information could help to achieve higher production of the white wheat binomial (Triticum aestivum L.) by incorporating the spatial component in the examination of the above-mentioned relationship. On the other hand, the way it helps with the characterization of the key limiting climate factors of soft wheat growth which were analysed in four phenological periods. To achieve this aim, an important operational workload of this thesis consisted in the homogenization and obtention of comparable phenological and climate data, as well as agricultural statistics, which made heavy operational demands. For Spain and the Baltic countries, data on precipitation, maximum and minimum temperature, evapotranspiration and solar radiation from the available meteorological stations were gathered and calculated. A temporal serial approach was taken. These temporal series aligned with the years that agriculture statistics had previously gathered, these being 14 years from 2000 to 2013 (until 2011 for the Baltic countries). This temporal series was mapped with a phenological 25 km grid that had the location of the meteorological stations with the objective of obtaining the phenological values in each of the available stations. Following this procedure, the daily accumulated climate values for each of the four selected phenological periods were calculated; namely P1 (complete cycle), P2 (emergency-maturity), P3 (flowering) and P4 (flowering- maturity). The interpolated surface was then calculated using the set of selected methodologies for the comparison: deterministic conventional techniques, ordinary kriging and ordinary cokriging weighted by height. Once the most effective methods had been selected, the level of the interpolated climate variables was calculated. Local GWR regressions were calculated to quantify, examine and model the spatial relationships between soft wheat production and the accumulated variables in each of the four selected phenological periods. Results from the comparison among the SIMs revealed that no particular technique seems more favourable in terms of accuracy of prediction. However, when the three quality indicators of the compared SIMs are considered, some methodologies appeared to be more efficient than others. Regarding precipitation results, cokriging was the most accurate geostatistical technique for the majority of the cases. Deterministic interpolation in its radial function (controlled spline) was the most accurate technique for describing the accumulated precipitation surface in all phenological periods. However, results are more heterogeneous for the evapotranspiration and radiation methodologies. The most appropriate technique for these forecasts are the Inverse Distance Weighting (IDW), weighted IDW by height and the Ordinary Kriging (OK). Furthermore, it was found that for the majority of the cases where the Ordinary CoKriging (COK) error was larger than that of the OK, its efficacy was comparable to that of the OK in terms of error while the computational demands of the latter was much lower. The existing spatial inter-regional variability between climate factors and soft wheat production was confirmed for both Spain and the Baltic countries. The GWR statistic tool reproduced this variability with an outcome significative enough as to be considered a valid tool for future studies. Nevertheless, this tool also had some limitations with regards to the information delivered by the programme because it did not allow for a detailed break-down of its procedure. The indicators and phenological periods that best reproduced the spatial variability of yields in Spain and the Baltic countries made the results and the efficiency of the GWR statistical tool even more reliable, despite the fact that these were already aligned with the agricultural knowledge about soft wheat crop under mediterranean and northeuropean agricultural systems. Thus, for Spain, the most robust indicator was the Climatic Water Balance outcome accumulated throughout the growing period (between emergency and maturity). Although the flowering period was the phase that best explained the accumulated climate variables in the GWR model. For the Baltic countries where the main limiting agricultural factor is the number of days of effective growth, the most effective indicator was the accumulated radiation throughout the entire growing cycle (between emergency and maturity). For the irrigated soft wheat there was no combination capable of explaining above the 30% of variation of the production in Spain. The fact that the pattern of the inter-regional relationship between the crop production and key climate variables is heterogeneous within a country could contribute to one is one of the greatest challenges that the monitoring and forecasting operational systems for crop production face nowadays. The present findings suggest that the solution may lay in downscaling the spatial target scale from a national to a regional level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La computación ubicua está extendiendo su aplicación desde entornos específicos hacia el uso cotidiano; el Internet de las cosas (IoT, en inglés) es el ejemplo más brillante de su aplicación y de la complejidad intrínseca que tiene, en comparación con el clásico desarrollo de aplicaciones. La principal característica que diferencia la computación ubicua de los otros tipos está en como se emplea la información de contexto. Las aplicaciones clásicas no usan en absoluto la información de contexto o usan sólo una pequeña parte de ella, integrándola de una forma ad hoc con una implementación específica para la aplicación. La motivación de este tratamiento particular se tiene que buscar en la dificultad de compartir el contexto con otras aplicaciones. En realidad lo que es información de contexto depende del tipo de aplicación: por poner un ejemplo, para un editor de imágenes, la imagen es la información y sus metadatos, tales como la hora de grabación o los ajustes de la cámara, son el contexto, mientras que para el sistema de ficheros la imagen junto con los ajustes de cámara son la información, y el contexto es representado por los metadatos externos al fichero como la fecha de modificación o la de último acceso. Esto significa que es difícil compartir la información de contexto, y la presencia de un middleware de comunicación que soporte el contexto de forma explícita simplifica el desarrollo de aplicaciones para computación ubicua. Al mismo tiempo el uso del contexto no tiene que ser obligatorio, porque si no se perdería la compatibilidad con las aplicaciones que no lo usan, convirtiendo así dicho middleware en un middleware de contexto. SilboPS, que es nuestra implementación de un sistema publicador/subscriptor basado en contenido e inspirado en SIENA [11, 9], resuelve dicho problema extendiendo el paradigma con dos elementos: el Contexto y la Función de Contexto. El contexto representa la información contextual propiamente dicha del mensaje por enviar o aquella requerida por el subscriptor para recibir notificaciones, mientras la función de contexto se evalúa usando el contexto del publicador y del subscriptor. Esto permite desacoplar la lógica de gestión del contexto de aquella de la función de contexto, incrementando de esta forma la flexibilidad de la comunicación entre varias aplicaciones. De hecho, al utilizar por defecto un contexto vacío, las aplicaciones clásicas y las que manejan el contexto pueden usar el mismo SilboPS, resolviendo de esta forma la incompatibilidad entre las dos categorías. En cualquier caso la posible incompatibilidad semántica sigue existiendo ya que depende de la interpretación que cada aplicación hace de los datos y no puede ser solucionada por una tercera parte agnóstica. El entorno IoT conlleva retos no sólo de contexto, sino también de escalabilidad. La cantidad de sensores, el volumen de datos que producen y la cantidad de aplicaciones que podrían estar interesadas en manipular esos datos está en continuo aumento. Hoy en día la respuesta a esa necesidad es la computación en la nube, pero requiere que las aplicaciones sean no sólo capaces de escalar, sino de hacerlo de forma elástica [22]. Desgraciadamente no hay ninguna primitiva de sistema distribuido de slicing que soporte un particionamiento del estado interno [33] junto con un cambio en caliente, además de que los sistemas cloud actuales como OpenStack u OpenNebula no ofrecen directamente una monitorización elástica. Esto implica que hay un problema bilateral: cómo puede una aplicación escalar de forma elástica y cómo monitorizar esa aplicación para saber cuándo escalarla horizontalmente. E-SilboPS es la versión elástica de SilboPS y se adapta perfectamente como solución para el problema de monitorización, gracias al paradigma publicador/subscriptor basado en contenido y, a diferencia de otras soluciones [5], permite escalar eficientemente, para cumplir con la carga de trabajo sin sobre-provisionar o sub-provisionar recursos. Además está basado en un algoritmo recientemente diseñado que muestra como añadir elasticidad a una aplicación con distintas restricciones sobre el estado: sin estado, estado aislado con coordinación externa y estado compartido con coordinación general. Su evaluación enseña como se pueden conseguir notables speedups, siendo el nivel de red el principal factor limitante: de hecho la eficiencia calculada (ver Figura 5.8) demuestra cómo se comporta cada configuración en comparación con las adyacentes. Esto permite conocer la tendencia actual de todo el sistema, para saber si la siguiente configuración compensará el coste que tiene con la ganancia que lleva en el throughput de notificaciones. Se tiene que prestar especial atención en la evaluación de los despliegues con igual coste, para ver cuál es la mejor solución en relación a una carga de trabajo dada. Como último análisis se ha estimado el overhead introducido por las distintas configuraciones a fin de identificar el principal factor limitante del throughput. Esto ayuda a determinar la parte secuencial y el overhead de base [26] en un despliegue óptimo en comparación con uno subóptimo. Efectivamente, según el tipo de carga de trabajo, la estimación puede ser tan baja como el 10 % para un óptimo local o tan alta como el 60 %: esto ocurre cuando se despliega una configuración sobredimensionada para la carga de trabajo. Esta estimación de la métrica de Karp-Flatt es importante para el sistema de gestión porque le permite conocer en que dirección (ampliar o reducir) es necesario cambiar el despliegue para mejorar sus prestaciones, en lugar que usar simplemente una política de ampliación. ABSTRACT The application of pervasive computing is extending from field-specific to everyday use. The Internet of Things (IoT) is the shiniest example of its application and of its intrinsic complexity compared with classical application development. The main characteristic that differentiates pervasive from other forms of computing lies in the use of contextual information. Some classical applications do not use any contextual information whatsoever. Others, on the other hand, use only part of the contextual information, which is integrated in an ad hoc fashion using an application-specific implementation. This information is handled in a one-off manner because of the difficulty of sharing context across applications. As a matter of fact, the application type determines what the contextual information is. For instance, for an imaging editor, the image is the information and its meta-data, like the time of the shot or camera settings, are the context, whereas, for a file-system application, the image, including its camera settings, is the information and the meta-data external to the file, like the modification date or the last accessed timestamps, constitute the context. This means that contextual information is hard to share. A communication middleware that supports context decidedly eases application development in pervasive computing. However, the use of context should not be mandatory; otherwise, the communication middleware would be reduced to a context middleware and no longer be compatible with non-context-aware applications. SilboPS, our implementation of content-based publish/subscribe inspired by SIENA [11, 9], solves this problem by adding two new elements to the paradigm: the context and the context function. Context represents the actual contextual information specific to the message to be sent or that needs to be notified to the subscriber, whereas the context function is evaluated using the publisher’s context and the subscriber’s context to decide whether the current message and context are useful for the subscriber. In this manner, context logic management is decoupled from context management, increasing the flexibility of communication and usage across different applications. Since the default context is empty, context-aware and classical applications can use the same SilboPS, resolving the syntactic mismatch that there is between the two categories. In any case, the possible semantic mismatch is still present because it depends on how each application interprets the data, and it cannot be resolved by an agnostic third party. The IoT environment introduces not only context but scaling challenges too. The number of sensors, the volume of the data that they produce and the number of applications that could be interested in harvesting such data are growing all the time. Today’s response to the above need is cloud computing. However, cloud computing applications need to be able to scale elastically [22]. Unfortunately there is no slicing, as distributed system primitives that support internal state partitioning [33] and hot swapping and current cloud systems like OpenStack or OpenNebula do not provide elastic monitoring out of the box. This means there is a two-sided problem: 1) how to scale an application elastically and 2) how to monitor the application and know when it should scale in or out. E-SilboPS is the elastic version of SilboPS. I t is the solution for the monitoring problem thanks to its content-based publish/subscribe nature and, unlike other solutions [5], it scales efficiently so as to meet workload demand without overprovisioning or underprovisioning. Additionally, it is based on a newly designed algorithm that shows how to add elasticity in an application with different state constraints: stateless, isolated stateful with external coordination and shared stateful with general coordination. Its evaluation shows that it is able to achieve remarkable speedups where the network layer is the main limiting factor: the calculated efficiency (see Figure 5.8) shows how each configuration performs with respect to adjacent configurations. This provides insight into the actual trending of the whole system in order to predict if the next configuration would offset its cost against the resulting gain in notification throughput. Particular attention has been paid to the evaluation of same-cost deployments in order to find out which one is the best for the given workload demand. Finally, the overhead introduced by the different configurations has been estimated to identify the primary limiting factor for throughput. This helps to determine the intrinsic sequential part and base overhead [26] of an optimal versus a suboptimal deployment. Depending on the type of workload, this can be as low as 10% in a local optimum or as high as 60% when an overprovisioned configuration is deployed for a given workload demand. This Karp-Flatt metric estimation is important for system management because it indicates the direction (scale in or out) in which the deployment has to be changed in order to improve its performance instead of simply using a scale-out policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Entendemos por inteligencia colectiva una forma de inteligencia que surge de la colaboración y la participación de varios individuos o, siendo más estrictos, varias entidades. En base a esta sencilla definición podemos observar que este concepto es campo de estudio de las más diversas disciplinas como pueden ser la sociología, las tecnologías de la información o la biología, atendiendo cada una de ellas a un tipo de entidades diferentes: seres humanos, elementos de computación o animales. Como elemento común podríamos indicar que la inteligencia colectiva ha tenido como objetivo el ser capaz de fomentar una inteligencia de grupo que supere a la inteligencia individual de las entidades que lo forman a través de mecanismos de coordinación, cooperación, competencia, integración, diferenciación, etc. Sin embargo, aunque históricamente la inteligencia colectiva se ha podido desarrollar de forma paralela e independiente en las distintas disciplinas que la tratan, en la actualidad, los avances en las tecnologías de la información han provocado que esto ya no sea suficiente. Hoy en día seres humanos y máquinas a través de todo tipo de redes de comunicación e interfaces, conviven en un entorno en el que la inteligencia colectiva ha cobrado una nueva dimensión: ya no sólo puede intentar obtener un comportamiento superior al de sus entidades constituyentes sino que ahora, además, estas inteligencias individuales son completamente diferentes unas de otras y aparece por lo tanto el doble reto de ser capaces de gestionar esta gran heterogeneidad y al mismo tiempo ser capaces de obtener comportamientos aún más inteligentes gracias a las sinergias que los distintos tipos de inteligencias pueden generar. Dentro de las áreas de trabajo de la inteligencia colectiva existen varios campos abiertos en los que siempre se intenta obtener unas prestaciones superiores a las de los individuos. Por ejemplo: consciencia colectiva, memoria colectiva o sabiduría colectiva. Entre todos estos campos nosotros nos centraremos en uno que tiene presencia en la práctica totalidad de posibles comportamientos inteligentes: la toma de decisiones. El campo de estudio de la toma de decisiones es realmente amplio y dentro del mismo la evolución ha sido completamente paralela a la que citábamos anteriormente en referencia a la inteligencia colectiva. En primer lugar se centró en el individuo como entidad decisoria para posteriormente desarrollarse desde un punto de vista social, institucional, etc. La primera fase dentro del estudio de la toma de decisiones se basó en la utilización de paradigmas muy sencillos: análisis de ventajas e inconvenientes, priorización basada en la maximización de algún parámetro del resultado, capacidad para satisfacer los requisitos de forma mínima por parte de las alternativas, consultas a expertos o entidades autorizadas o incluso el azar. Sin embargo, al igual que el paso del estudio del individuo al grupo supone una nueva dimensión dentro la inteligencia colectiva la toma de decisiones colectiva supone un nuevo reto en todas las disciplinas relacionadas. Además, dentro de la decisión colectiva aparecen dos nuevos frentes: los sistemas de decisión centralizados y descentralizados. En el presente proyecto de tesis nos centraremos en este segundo, que es el que supone una mayor atractivo tanto por las posibilidades de generar nuevo conocimiento y trabajar con problemas abiertos actualmente así como en lo que respecta a la aplicabilidad de los resultados que puedan obtenerse. Ya por último, dentro del campo de los sistemas de decisión descentralizados existen varios mecanismos fundamentales que dan lugar a distintas aproximaciones a la problemática propia de este campo. Por ejemplo el liderazgo, la imitación, la prescripción o el miedo. Nosotros nos centraremos en uno de los más multidisciplinares y con mayor capacidad de aplicación en todo tipo de disciplinas y que, históricamente, ha demostrado que puede dar lugar a prestaciones muy superiores a otros tipos de mecanismos de decisión descentralizados: la confianza y la reputación. Resumidamente podríamos indicar que confianza es la creencia por parte de una entidad que otra va a realizar una determinada actividad de una forma concreta. En principio es algo subjetivo, ya que la confianza de dos entidades diferentes sobre una tercera no tiene porqué ser la misma. Por otro lado, la reputación es la idea colectiva (o evaluación social) que distintas entidades de un sistema tiene sobre otra entidad del mismo en lo que respecta a un determinado criterio. Es por tanto una información de carácter colectivo pero única dentro de un sistema, no asociada a cada una de las entidades del sistema sino por igual a todas ellas. En estas dos sencillas definiciones se basan la inmensa mayoría de sistemas colectivos. De hecho muchas disertaciones indican que ningún tipo de organización podría ser viable de no ser por la existencia y la utilización de los conceptos de confianza y reputación. A partir de ahora, a todo sistema que utilice de una u otra forma estos conceptos lo denominaremos como sistema de confianza y reputación (o TRS, Trust and Reputation System). Sin embargo, aunque los TRS son uno de los aspectos de nuestras vidas más cotidianos y con un mayor campo de aplicación, el conocimiento que existe actualmente sobre ellos no podría ser más disperso. Existen un gran número de trabajos científicos en todo tipo de áreas de conocimiento: filosofía, psicología, sociología, economía, política, tecnologías de la información, etc. Pero el principal problema es que no existe una visión completa de la confianza y reputación en su sentido más amplio. Cada disciplina focaliza sus estudios en unos aspectos u otros dentro de los TRS, pero ninguna de ellas trata de explotar el conocimiento generado en el resto para mejorar sus prestaciones en su campo de aplicación concreto. Aspectos muy detallados en algunas áreas de conocimiento son completamente obviados por otras, o incluso aspectos tratados por distintas disciplinas, al ser estudiados desde distintos puntos de vista arrojan resultados complementarios que, sin embargo, no son aprovechados fuera de dichas áreas de conocimiento. Esto nos lleva a una dispersión de conocimiento muy elevada y a una falta de reutilización de metodologías, políticas de actuación y técnicas de una disciplina a otra. Debido su vital importancia, esta alta dispersión de conocimiento se trata de uno de los principales problemas que se pretenden resolver con el presente trabajo de tesis. Por otro lado, cuando se trabaja con TRS, todos los aspectos relacionados con la seguridad están muy presentes ya que muy este es un tema vital dentro del campo de la toma de decisiones. Además también es habitual que los TRS se utilicen para desempeñar responsabilidades que aportan algún tipo de funcionalidad relacionada con el mundo de la seguridad. Por último no podemos olvidar que el acto de confiar está indefectiblemente unido al de delegar una determinada responsabilidad, y que al tratar estos conceptos siempre aparece la idea de riesgo, riesgo de que las expectativas generadas por el acto de la delegación no se cumplan o se cumplan de forma diferente. Podemos ver por lo tanto que cualquier sistema que utiliza la confianza para mejorar o posibilitar su funcionamiento, por su propia naturaleza, es especialmente vulnerable si las premisas en las que se basa son atacadas. En este sentido podemos comprobar (tal y como analizaremos en más detalle a lo largo del presente documento) que las aproximaciones que realizan las distintas disciplinas que tratan la violación de los sistemas de confianza es de lo más variado. únicamente dentro del área de las tecnologías de la información se ha intentado utilizar alguno de los enfoques de otras disciplinas de cara a afrontar problemas relacionados con la seguridad de TRS. Sin embargo se trata de una aproximación incompleta y, normalmente, realizada para cumplir requisitos de aplicaciones concretas y no con la idea de afianzar una base de conocimiento más general y reutilizable en otros entornos. Con todo esto en cuenta, podemos resumir contribuciones del presente trabajo de tesis en las siguientes. • La realización de un completo análisis del estado del arte dentro del mundo de la confianza y la reputación que nos permite comparar las ventajas e inconvenientes de las diferentes aproximación que se realizan a estos conceptos en distintas áreas de conocimiento. • La definición de una arquitectura de referencia para TRS que contempla todas las entidades y procesos que intervienen en este tipo de sistemas. • La definición de un marco de referencia para analizar la seguridad de TRS. Esto implica tanto identificar los principales activos de un TRS en lo que respecta a la seguridad, así como el crear una tipología de posibles ataques y contramedidas en base a dichos activos. • La propuesta de una metodología para el análisis, el diseño, el aseguramiento y el despliegue de un TRS en entornos reales. Adicionalmente se exponen los principales tipos de aplicaciones que pueden obtenerse de los TRS y los medios para maximizar sus prestaciones en cada una de ellas. • La generación de un software que permite simular cualquier tipo de TRS en base a la arquitectura propuesta previamente. Esto permite evaluar las prestaciones de un TRS bajo una determinada configuración en un entorno controlado previamente a su despliegue en un entorno real. Igualmente es de gran utilidad para evaluar la resistencia a distintos tipos de ataques o mal-funcionamientos del sistema. Además de las contribuciones realizadas directamente en el campo de los TRS, hemos realizado aportaciones originales a distintas áreas de conocimiento gracias a la aplicación de las metodologías de análisis y diseño citadas con anterioridad. • Detección de anomalías térmicas en Data Centers. Hemos implementado con éxito un sistema de deteción de anomalías térmicas basado en un TRS. Comparamos la detección de prestaciones de algoritmos de tipo Self-Organized Maps (SOM) y Growing Neural Gas (GNG). Mostramos como SOM ofrece mejores resultados para anomalías en los sistemas de refrigeración de la sala mientras que GNG es una opción más adecuada debido a sus tasas de detección y aislamiento para casos de anomalías provocadas por una carga de trabajo excesiva. • Mejora de las prestaciones de recolección de un sistema basado en swarm computing y odometría social. Gracias a la implementación de un TRS conseguimos mejorar las capacidades de coordinación de una red de robots autónomos distribuidos. La principal contribución reside en el análisis y la validación de las mejoras increméntales que pueden conseguirse con la utilización apropiada de la información existente en el sistema y que puede ser relevante desde el punto de vista de un TRS, y con la implementación de algoritmos de cálculo de confianza basados en dicha información. • Mejora de la seguridad de Wireless Mesh Networks contra ataques contra la integridad, la confidencialidad o la disponibilidad de los datos y / o comunicaciones soportadas por dichas redes. • Mejora de la seguridad de Wireless Sensor Networks contra ataques avanzamos, como insider attacks, ataques desconocidos, etc. Gracias a las metodologías presentadas implementamos contramedidas contra este tipo de ataques en entornos complejos. En base a los experimentos realizados, hemos demostrado que nuestra aproximación es capaz de detectar y confinar varios tipos de ataques que afectan a los protocoles esenciales de la red. La propuesta ofrece unas velocidades de detección muy altas así como demuestra que la inclusión de estos mecanismos de actuación temprana incrementa significativamente el esfuerzo que un atacante tiene que introducir para comprometer la red. Finalmente podríamos concluir que el presente trabajo de tesis supone la generación de un conocimiento útil y aplicable a entornos reales, que nos permite la maximización de las prestaciones resultantes de la utilización de TRS en cualquier tipo de campo de aplicación. De esta forma cubrimos la principal carencia existente actualmente en este campo, que es la falta de una base de conocimiento común y agregada y la inexistencia de una metodología para el desarrollo de TRS que nos permita analizar, diseñar, asegurar y desplegar TRS de una forma sistemática y no artesanal y ad-hoc como se hace en la actualidad. ABSTRACT By collective intelligence we understand a form of intelligence that emerges from the collaboration and competition of many individuals, or strictly speaking, many entities. Based on this simple definition, we can see how this concept is the field of study of a wide range of disciplines, such as sociology, information science or biology, each of them focused in different kinds of entities: human beings, computational resources, or animals. As a common factor, we can point that collective intelligence has always had the goal of being able of promoting a group intelligence that overcomes the individual intelligence of the basic entities that constitute it. This can be accomplished through different mechanisms such as coordination, cooperation, competence, integration, differentiation, etc. Collective intelligence has historically been developed in a parallel and independent way among the different disciplines that deal with it. However, this is not enough anymore due to the advances in information technologies. Nowadays, human beings and machines coexist in environments where collective intelligence has taken a new dimension: we yet have to achieve a better collective behavior than the individual one, but now we also have to deal with completely different kinds of individual intelligences. Therefore, we have a double goal: being able to deal with this heterogeneity and being able to get even more intelligent behaviors thanks to the synergies that the different kinds of intelligence can generate. Within the areas of collective intelligence there are several open topics where they always try to get better performances from groups than from the individuals. For example: collective consciousness, collective memory, or collective wisdom. Among all these topics we will focus on collective decision making, that has influence in most of the collective intelligent behaviors. The field of study of decision making is really wide, and its evolution has been completely parallel to the aforementioned collective intelligence. Firstly, it was focused on the individual as the main decision-making entity, but later it became involved in studying social and institutional groups as basic decision-making entities. The first studies within the decision-making discipline were based on simple paradigms, such as pros and cons analysis, criteria prioritization, fulfillment, following orders, or even chance. However, in the same way that studying the community instead of the individual meant a paradigm shift within collective intelligence, collective decision-making means a new challenge for all the related disciplines. Besides, two new main topics come up when dealing with collective decision-making: centralized and decentralized decision-making systems. In this thesis project we focus in the second one, because it is the most interesting based on the opportunities to generate new knowledge and deal with open issues in this area, as well as these results can be put into practice in a wider set of real-life environments. Finally, within the decentralized collective decision-making systems discipline, there are several basic mechanisms that lead to different approaches to the specific problems of this field, for example: leadership, imitation, prescription, or fear. We will focus on trust and reputation. They are one of the most multidisciplinary concepts and with more potential for applying them in every kind of environments. Besides, they have historically shown that they can generate better performance than other decentralized decision-making mechanisms. Shortly, we say trust is the belief of one entity that the outcome of other entities’ actions is going to be in a specific way. It is a subjective concept because the trust of two different entities in another one does not have to be the same. Reputation is the collective idea (or social evaluation) that a group of entities within a system have about another entity based on a specific criterion. Thus, it is a collective concept in its origin. It is important to say that the behavior of most of the collective systems are based on these two simple definitions. In fact, a lot of articles and essays describe how any organization would not be viable if the ideas of trust and reputation did not exist. From now on, we call Trust an Reputation System (TRS) to any kind of system that uses these concepts. Even though TRSs are one of the most common everyday aspects in our lives, the existing knowledge about them could not be more dispersed. There are thousands of scientific works in every field of study related to trust and reputation: philosophy, psychology, sociology, economics, politics, information sciences, etc. But the main issue is that a comprehensive vision of trust and reputation for all these disciplines does not exist. Every discipline focuses its studies on a specific set of topics but none of them tries to take advantage of the knowledge generated in the other disciplines to improve its behavior or performance. Detailed topics in some fields are completely obviated in others, and even though the study of some topics within several disciplines produces complementary results, these results are not used outside the discipline where they were generated. This leads us to a very high knowledge dispersion and to a lack in the reuse of methodologies, policies and techniques among disciplines. Due to its great importance, this high dispersion of trust and reputation knowledge is one of the main problems this thesis contributes to solve. When we work with TRSs, all the aspects related to security are a constant since it is a vital aspect within the decision-making systems. Besides, TRS are often used to perform some responsibilities related to security. Finally, we cannot forget that the act of trusting is invariably attached to the act of delegating a specific responsibility and, when we deal with these concepts, the idea of risk is always present. This refers to the risk of generated expectations not being accomplished or being accomplished in a different way we anticipated. Thus, we can see that any system using trust to improve or enable its behavior, because of its own nature, is especially vulnerable if the premises it is based on are attacked. Related to this topic, we can see that the approaches of the different disciplines that study attacks of trust and reputation are very diverse. Some attempts of using approaches of other disciplines have been made within the information science area of knowledge, but these approaches are usually incomplete, not systematic and oriented to achieve specific requirements of specific applications. They never try to consolidate a common base of knowledge that could be reusable in other context. Based on all these ideas, this work makes the following direct contributions to the field of TRS: • The compilation of the most relevant existing knowledge related to trust and reputation management systems focusing on their advantages and disadvantages. • We define a generic architecture for TRS, identifying the main entities and processes involved. • We define a generic security framework for TRS. We identify the main security assets and propose a complete taxonomy of attacks for TRS. • We propose and validate a methodology to analyze, design, secure and deploy TRS in real-life environments. Additionally we identify the principal kind of applications we can implement with TRS and how TRS can provide a specific functionality. • We develop a software component to validate and optimize the behavior of a TRS in order to achieve a specific functionality or performance. In addition to the contributions made directly to the field of the TRS, we have made original contributions to different areas of knowledge thanks to the application of the analysis, design and security methodologies previously presented: • Detection of thermal anomalies in Data Centers. Thanks to the application of the TRS analysis and design methodologies, we successfully implemented a thermal anomaly detection system based on a TRS.We compare the detection performance of Self-Organized- Maps and Growing Neural Gas algorithms. We show how SOM provides better results for Computer Room Air Conditioning anomaly detection, yielding detection rates of 100%, in training data with malfunctioning sensors. We also show that GNG yields better detection and isolation rates for workload anomaly detection, reducing the false positive rate when compared to SOM. • Improving the performance of a harvesting system based on swarm computing and social odometry. Through the implementation of a TRS, we achieved to improve the ability of coordinating a distributed network of autonomous robots. The main contribution lies in the analysis and validation of the incremental improvements that can be achieved with proper use information that exist in the system and that are relevant for the TRS, and the implementation of the appropriated trust algorithms based on such information. • Improving Wireless Mesh Networks security against attacks against the integrity, confidentiality or availability of data and communications supported by these networks. Thanks to the implementation of a TRS we improved the detection time rate against these kind of attacks and we limited their potential impact over the system. • We improved the security of Wireless Sensor Networks against advanced attacks, such as insider attacks, unknown attacks, etc. Thanks to the TRS analysis and design methodologies previously described, we implemented countermeasures against such attacks in a complex environment. In our experiments we have demonstrated that our system is capable of detecting and confining various attacks that affect the core network protocols. We have also demonstrated that our approach is capable of rapid attack detection. Also, it has been proven that the inclusion of the proposed detection mechanisms significantly increases the effort the attacker has to introduce in order to compromise the network. Finally we can conclude that, to all intents and purposes, this thesis offers a useful and applicable knowledge in real-life environments that allows us to maximize the performance of any system based on a TRS. Thus, we deal with the main deficiency of this discipline: the lack of a common and complete base of knowledge and the lack of a methodology for the development of TRS that allow us to analyze, design, secure and deploy TRS in a systematic way.