28 resultados para vehicle-driver model
Resumo:
In hybrid and electric vehicles, passengers sit very close to an electric system of significant power, which means that they may be subjected to high electromagnetic fields. The hazards of long-term exposure to these fields must be taken into account when designing electric vehicles and their components. Among all the electric devices present in the power train, the electronic converter is the most difficult to analyze, given that it works with different frequencies. In this paper, a methodology to evaluate the magnetic field created by a power electronics converter is proposed. After a brief overview of the recommendations of electromagnetic fields exposure, the magnetic field produced by an inverter is analyzed using finite element techniques. The results obtained are compared to laboratory measurements, taken from a real inverter, in order to validate the model. Finally, results are used to draw some conclusions regarding vehicle design criteria and magnetic shielding efficiency.
Resumo:
Usually, vehicle applications require the use of artificial intelligent techniques to implement control methods, due to noise provided by sensors or the impossibility of full knowledge about dynamics of the vehicle (engine state, wheel pressure or occupiers weight). This work presents a method to on-line evolve a fuzzy controller for commanding vehicles? pedals at low speeds; in this scenario, the slightest alteration in the vehicle or road conditions can vary controller?s behavior in a non predictable way. The proposal adapts singletons positions in real time, and trapezoids used to codify the input variables are modified according with historical data. Experimentation in both simulated and real vehicles are provided to show how fast and precise the method is, even compared with a human driver or using different vehicles.
Resumo:
In this paper the daily temporal and spatial behavior of electric vehicles (EVs) is modelled using an activity-based (ActBM) microsimulation model for Flanders region (Belgium). Assuming that all EVs are completely charged at the beginning of the day, this mobility model is used to determine the percentage of Flemish vehicles that cannot cover their programmed daily trips and need to be recharged during the day. Assuming a variable electricity price, an optimization algorithm determines when and where EVs can be recharged at minimum cost for their owners. This optimization takes into account the individual mobility constraint for each vehicle, as they can only be charged when the car is stopped and the owner is performing an activity. From this information, the aggregated electric demand for Flanders is obtained, identifying the most overloaded areas at the critical hours. Finally it is also analyzed what activities EV owners are underway during their recharging period. From this analysis, different actions for public charging point deployment in different areas and for different activities are proposed.
Resumo:
Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.
Resumo:
Vision-based object detection from a moving platform becomes particularly challenging in the field of advanced driver assistance systems (ADAS). In this context, onboard vision-based vehicle verification strategies become critical, facing challenges derived from the variability of vehicles appearance, illumination, and vehicle speed. In this paper, an optimized HOG configuration for onboard vehicle verification is proposed which not only considers its spatial and orientation resolution, but descriptor processing strategies and classification. An in-depth analysis of the optimal settings for HOG for onboard vehicle verification is presented, in the context of SVM classification with different kernels. In contrast to many existing approaches, the evaluation is realized in a public and heterogeneous database of vehicle and non-vehicle images in different areas of the road, rendering excellent verification rates that outperform other similar approaches in the literature.
Resumo:
This paper deals with the prediction of velocity fields on the 2415-3S airfoil which will be used for an unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the internal duct were studied; starting from the base 2415-3S airfoil developed in previous investigation, basing on the hypothesis of decreasing the flow separation produced when the propulsive airflow merges the external flow, and in this way obtaining the best configuration. For that purpose, an exhaustive study of the mesh sensitivity was performed. It was used a non-structured mesh since the computational domain is three-dimensional and complex. The selected mesh contains approximately 12.5 million elements. Both the computational domain and the numerical solution were made with commercial CAD and CFD software, respectively. Air, incompressible and steady was analyzed. The boundary conditions are in concordance with experimental setup in the AF 6109 wind tunnel. The k-e model is utilized to describe the turbulent flow process as followed in references. Results allowed obtaining velocity contours as well as lift and drag coefficients and also the location of separation and reattachment regions in some cases for zero degrees of angle of attack on the internal and external surfaces of the airfoil. Finally, the selection of the configuration with the best aerodynamic performance was made, selecting the option without curved baffles.
Resumo:
This paper deals with the prediction of pressure and velocity fields on the 2415-3S airfoil which will be used for and unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the internal duct were studied; starting from the base 2415-3S airfoil developed in previous investigation, basing on the hypothesis of decreasing the flow separation produced when the propulsive airflow merges the external flow, and in this way obtaining the best configuration. For that purpose, an exhaustive study of the mesh sensitivity was performed. It was used a non-structured mesh since the computational domain is tridimensional and complex. The selected mesh contains approximately 12.5 million elements. Both the computational domain and the numerical solution were made with commercial CAD and CFD software respectively. Air, incompressible and steady was analyzed. The boundary conditions are in concordance with experimental setup in the AF 6109 wind tunnel. The k-ε model is utilized to describe the turbulent flow process as followed in references. Results allowed obtaining pressure and velocity contours as well as lift and drag coefficients and also the location of separation and reattachment regions in some cases for zero degrees of angle of attack on the internal and external surfaces of the airfoil. Finally, the selection of the configuration with the best aerodynamic performance was made, selecting the option without curved baffles.
Resumo:
Here, a simple theoretical model of the vehicle induced flow and its effects on traffic sign panels is presented. The model is a continuation of a previous one by Sanz-Andrés and coworkers, now including the flexibility of the panel (and, therefore, the flow effects associated to the motion of the panel). Through the paper an aeroelastic one-degree-of-freedom model is developed and the flow effects are computed from unsteady potential theory. The influence of panel's mechanical properties (mass, damping ratio, and stiffness) in the motion induced forces are numerically analyzed.
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.
Resumo:
This paper is a continuation of a previous one, Sanz-Andrés, Santiago-Prowald, Baker and Quinn (J. Wind Eng. Ind. Aerodyn. 91 (2003) 925) concerning the loads generated on a structural panel (traffic sign) by vehicle running along the road, although obviously, the results are also applicable to the effects of other moving vehicles such as trains. The structural panel was modelized as a large plate whose largest dimension is perpendicular to the vehicle motion direction. In this paper a similar approach is used to develop a mathematical model for the vehicle-induced load on pedestrian barriers, modelized as a large plate whose largest dimension is parallel to the vehicle motion direction. The purpose of the work is to develop a model simple enough to give analytical results, although with the physical phenomena correctly accounted for, such as to be able to explain, at least qualitatively, the main characteristics of the phenomenon, as observed in the experiments performed by Quinn et al. (J. Wind Eng. Ind. Aerodyn. 89 (2001) 831). Actually, in spite of the model simplicity, results of the theoretical model show a reasonable good quantitative agreement with the experimental results. The aim of this and previous publications is to provide to the transport infrastructure community with some simple tools that can help to explain, and in some cases also to compute, the unsteady loading produced by moving vehicles on persons and installations placed close to the roads or tracks.
Resumo:
The main object of this study is to contribute to the study of the train-induced force on pedestrians with a theoretical model based on unsteady potential flow. The same method can be applied to other bodies and other kind of moving vehicles. The outcome of this theoretical model is that the force coefficient (referred to the vehicle speed and the pedestrian cross-section diameter) acting on the pedestrian are proportional to a single parameter which involves the pedestrian cross-section diameter, the vehicle cross-section area and the distance between the pedestrian and the vehicle. The results of the present model concerning the change in modulus and orientation experienced by the pedestrian, as the vehicles pass by, has a similar appearance to that considered in the European standards. The results obtained are mainly qualitative because of the simplifying assumptions needed to obtain a simple formulation leading to analytical results, except in the case of a vehicle with streamlined front shapes, where quantitative results can be expected.
Resumo:
The determination of the loads on traffic sign panels in the current standards does not, in general, take into account the vehicle-induced loads, as explained by Quinn, Baker and Wright (QBW in what follows) (J. Wind Eng. Ind. Aerodyn. 89 (2001) 831). On the other hand, a report from Cali and Covert (CC) (J. Wind Eng. Ind. Aerodyn. 84 (2000) 87) indicates that in highway sign support structures, vehicle-induced loads have led to premature failures in some cases. The aim of this paper is to present a mathematical model for the vehicle-induced load on a flat sign panel, simple enough to give analytical results, but able to explain the main characteristics of the phenomenon. The results of the theoretical model help to explain the behaviour observed in the experiments performed in previous studies.
Resumo:
In electric vehicles, passengers sit very close to an electric system of significant power. The high currents achieved in these vehicles mean that the passengers could be exposed to significant magnetic fields. One of the electric devices present in the power train are the batteries. In this paper, a methodology to evaluate the magnetic field created by these batteries is presented. First, the magnetic field generated by a single battery is analyzed using finite elements simulations. Results are compared to laboratory measurements, taken from a real battery, in order to validate the model. After this, the magnetic field created by a complete battery pack is estimated and results are discussed.