18 resultados para soldadura


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Históricamente la fractura ha sido considerada siempre como un efecto indeseado entre los materiales, dado que su aparición supone un cese del material en servicio, puesto que un material fracturado carece de importancia desde el punto de vista comercial. Consecuentemente, la Mecánica de Fractura ha experimentado un desarrollo importante en las últimas décadas como no lo hizo en toda la historia de los materiales. El desarrollo de nuevos campos a nivel científico y técnico han estado de la mano con el desarrollo de nuevos materiales que satisfagan las necesidades particulares de cada sector o aplicación. Este requerimiento se ve acentuado cuando se incorpora el aspecto económico, dado que, así como se necesitan materiales con mayor resistencia a la fractura, corrosión etc, también se necesita que su precio en el mercado sea accesible y que permita una aplicación rentable. En los últimos 70 años, desde los requerimientos de nuevos materiales resistentes a la fractura con los buques Liberty hasta el boom petrolero, pasando por las aplicaciones aeroespaciales se han desarrollado diversas teorías que explican el comportamiento de los materiales, en cuando a la tenacidad a la fractura en distintas temperaturas, composiciones químicas, materiales compuestos etc. Uno de los sectores que más ha demandado un desarrollo, por su amplitud en cuanto a requerimientos y consumo global, así como su impacto en la economía mundial, es el sector de gas, petróleo y petroquímica. Muchos de los proyectos que se intentaron desarrollar hasta hace menos de 25 años eran inviables por su elevado coste de ejecución y su bajo retorno de inversión debido a la caída de los precios del petróleo. Con una demanda creciente a nivel mundial y unos precios que apuntan hacia la estabilización o alza moderada, nuevos sistemas de trasporte por tuberías han sido necesarios desarrollar, desde el punto de vista de ingeniería, con el menos coste posible y de un modo seguro. Muchas de estas aplicaciones se vieron incrementadas cuando nuevos requerimientos en cuanto a resistencia a la corrosión fueron necesarios: demanda de materiales que no se corroan, con prestaciones seguras a nivel mecánico y un bajo coste. Esta nueva etapa se conoce como Aleaciones Resistentes a la Corrosión (CRA´s por sus siglas en inglés) en las cuales uno de los factores de diseño seguro recaían indiscutiblemente en la mecánica de fractura. Por estas razones era necesario entender como influía en la resistencia a la fractura las aportaciones que podrían hacerse sobre una superficie metálica. Al realizar el presente estudio se comenzó analizando la influencia que tenían modificaciones en el rango iónico sobre aceros al carbono. Estudios previos sobre láminas de acero ferrítico usadas en reactores de fisión nuclear demostraron que aportes de iones, en este particular el Helio, influían en el comportamiento de la tenacidad a la fractura en función de la temperatura. De este modo, un primer análisis fue hecho sobre la influencia de iones de nitrógeno aportados sobre superficies de acero al carbono y como modificaban su tenacidad a la fractura. Este primer análisis sirvió para comprobar el impacto que tenían pequeñas dosis de iones de nitrógeno en la tenacidad a la fractura. Otro desarrollo con una mayor aplicación industrial fue hecho sobre superficies de acero al carbono con aporte por soldadura de los materiales más usados para evitar la corrosión. El análisis se centró fundamentalmente en la influencia que tenían distintos materiales aportados como el MONEL 400, DUPLEX 928, INCONEL 625 y STAINLESS-STEEL 316 en referencia a características de diseño como la tensión elástica y la tensión a la rotura. Este análisis permitió conocer el impacto de los materiales aportados en los ensayos de tracción en probetas de acero al carbono. Una explicación acerca del comportamiento fue soportada por el análisis macrofractográfico de los perfiles fracturados y las macro deformaciones en la superficie de las probetas. Un posterior desarrollo teórico permitió modelar matemáticamente la fractura de las probetas aportadas por soldadura en la región elástica por medio de la Ley de Hooke, así como la teoría de Plasticidad de Hill para la región de deformación plástica. ABSTRACT Fracture mechanics has been extensively studied in the last 70 years by the constant requirements of new materials with low costs. These requirements have allowed surface modified welded materials in which it is necessary to know the influence of design fundamentals with the material surface welded. Several specimens have been studied for ductile fracture in longitudinal tensile tests for carbon steel surface-modified by weld overlay MONEL 400, DUPLEX 928, INCONEL 625 and STAINLESS-STEEL 316. Similarly of macro photographic analyzes to level the fractured surfaces that explain the behavior curves obtained in Tensile – displacement charts. The contribution of weld overlay material shows a significant impact on the yield and tensile stress of the specimens which was modeled according to Hooke's law for elastic area and Hill´s theory of plasticity to the plastic one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La fusión nuclear es, hoy en día, una alternativa energética a la que la comunidad internacional dedica mucho esfuerzo. El objetivo es el de generar entre diez y cincuenta veces más energía que la que consume mediante reacciones de fusión que se producirán en una mezcla de deuterio (D) y tritio (T) en forma de plasma a doscientos millones de grados centígrados. En los futuros reactores nucleares de fusión será necesario producir el tritio utilizado como combustible en el propio reactor termonuclear. Este hecho supone dar un paso más que las actuales máquinas experimentales dedicadas fundamentalmente al estudio de la física del plasma. Así pues, el tritio, en un reactor de fusión, se produce en sus envolturas regeneradoras cuya misión fundamental es la de blindaje neutrónico, producir y recuperar tritio (fuel para la reacción DT del plasma) y por último convertir la energía de los neutrones en calor. Existen diferentes conceptos de envolturas que pueden ser sólidas o líquidas. Las primeras se basan en cerámicas de litio (Li2O, Li4SiO4, Li2TiO3, Li2ZrO3) y multiplicadores neutrónicos de Be, necesarios para conseguir la cantidad adecuada de tritio. Los segundos se basan en el uso de metales líquidos o sales fundidas (Li, LiPb, FLIBE, FLINABE) con multiplicadores neutrónicos de Be o el propio Pb en el caso de LiPb. Los materiales estructurales pasan por aceros ferrítico-martensíticos de baja activación, aleaciones de vanadio o incluso SiCf/SiC. Cada uno de los diferentes conceptos de envoltura tendrá una problemática asociada que se estudiará en el reactor experimental ITER (del inglés, “International Thermonuclear Experimental Reactor”). Sin embargo, ITER no puede responder las cuestiones asociadas al daño de materiales y el efecto de la radiación neutrónica en las diferentes funciones de las envolturas regeneradoras. Como referencia, la primera pared de un reactor de fusión de 4000MW recibiría 30 dpa/año (valores para Fe-56) mientras que en ITER se conseguirían <10 dpa en toda su vida útil. Esta tesis se encuadra en el acuerdo bilateral entre Europa y Japón denominado “Broader Approach Agreement “(BA) (2007-2017) en el cual España juega un papel destacable. Estos proyectos, complementarios con ITER, son el acelerador para pruebas de materiales IFMIF (del inglés, “International Fusion Materials Irradiation Facility”) y el dispositivo de fusión JT-60SA. Así, los efectos de la irradiación de materiales en materiales candidatos para reactores de fusión se estudiarán en IFMIF. El objetivo de esta tesis es el diseño de un módulo de IFMIF para irradiación de envolturas regeneradoras basadas en metales líquidos para reactores de fusión. El módulo se llamará LBVM (del inglés, “Liquid Breeder Validation Module”). La propuesta surge de la necesidad de irradiar materiales funcionales para envolturas regeneradoras líquidas para reactores de fusión debido a que el diseño conceptual de IFMIF no contaba con esta utilidad. Con objeto de analizar la viabilidad de la presente propuesta, se han realizado cálculos neutrónicos para evaluar la idoneidad de llevar a cabo experimentos relacionados con envolturas líquidas en IFMIF. Así, se han considerado diferentes candidatos a materiales funcionales de envolturas regeneradoras: Fe (base de los materiales estructurales), SiC (material candidato para los FCI´s (del inglés, “Flow Channel Inserts”) en una envoltura regeneradora líquida, SiO2 (candidato para recubrimientos antipermeación), CaO (candidato para recubrimientos aislantes), Al2O3 (candidato para recubrimientos antipermeación y aislantes) y AlN (material candidato para recubrimientos aislantes). En cada uno de estos materiales se han calculado los parámetros de irradiación más significativos (dpa, H/dpa y He/dpa) en diferentes posiciones de IFMIF. Estos valores se han comparado con los esperados en la primera pared y en la zona regeneradora de tritio de un reactor de fusión. Para ello se ha elegido un reactor tipo HCLL (del inglés, “Helium Cooled Lithium Lead”) por tratarse de uno de los más prometedores. Además, los valores también se han comparado con los que se obtendrían en un reactor rápido de fisión puesto que la mayoría de las irradiaciones actuales se hacen en reactores de este tipo. Como conclusión al análisis de viabilidad, se puede decir que los materiales funcionales para mantos regeneradores líquidos podrían probarse en la zona de medio flujo de IFMIF donde se obtendrían ratios de H/dpa y He/dpa muy parecidos a los esperados en las zonas más irradiadas de un reactor de fusión. Además, con el objetivo de ajustar todavía más los valores, se propone el uso de un moderador de W (a considerar en algunas campañas de irradiación solamente debido a que su uso hace que los valores de dpa totales disminuyan). Los valores obtenidos para un reactor de fisión refuerzan la idea de la necesidad del LBVM, ya que los valores obtenidos de H/dpa y He/dpa son muy inferiores a los esperados en fusión y, por lo tanto, no representativos. Una vez demostrada la idoneidad de IFMIF para irradiar envolturas regeneradoras líquidas, y del estudio de la problemática asociada a las envolturas líquidas, también incluida en esta tesis, se proponen tres tipos de experimentos diferentes como base de diseño del LBVM. Éstos se orientan en las necesidades de un reactor tipo HCLL aunque a lo largo de la tesis se discute la aplicabilidad para otros reactores e incluso se proponen experimentos adicionales. Así, la capacidad experimental del módulo estaría centrada en el estudio del comportamiento de litio plomo, permeación de tritio, corrosión y compatibilidad de materiales. Para cada uno de los experimentos se propone un esquema experimental, se definen las condiciones necesarias en el módulo y la instrumentación requerida para controlar y diagnosticar las cápsulas experimentales. Para llevar a cabo los experimentos propuestos se propone el LBVM, ubicado en la zona de medio flujo de IFMIF, en su celda caliente, y con capacidad para 16 cápsulas experimentales. Cada cápsula (24-22 mm de diámetro y 80 mm de altura) contendrá la aleación eutéctica LiPb (hasta 50 mm de la altura de la cápsula) en contacto con diferentes muestras de materiales. Ésta irá soportada en el interior de tubos de acero por los que circulará un gas de purga (He), necesario para arrastrar el tritio generado en el eutéctico y permeado a través de las paredes de las cápsulas (continuamente, durante irradiación). Estos tubos, a su vez, se instalarán en una carcasa también de acero que proporcionará soporte y refrigeración tanto a los tubos como a sus cápsulas experimentales interiores. El módulo, en su conjunto, permitirá la extracción de las señales experimentales y el gas de purga. Así, a través de la estación de medida de tritio y el sistema de control, se obtendrán los datos experimentales para su análisis y extracción de conclusiones experimentales. Además del análisis de datos experimentales, algunas de estas señales tendrán una función de seguridad y por tanto jugarán un papel primordial en la operación del módulo. Para el correcto funcionamiento de las cápsulas y poder controlar su temperatura, cada cápsula se equipará con un calentador eléctrico y por tanto el módulo requerirá también ser conectado a la alimentación eléctrica. El diseño del módulo y su lógica de operación se describe en detalle en esta tesis. La justificación técnica de cada una de las partes que componen el módulo se ha realizado con soporte de cálculos de transporte de tritio, termohidráulicos y mecánicos. Una de las principales conclusiones de los cálculos de transporte de tritio es que es perfectamente viable medir el tritio permeado en las cápsulas mediante cámaras de ionización y contadores proporcionales comerciales, con sensibilidades en el orden de 10-9 Bq/m3. Los resultados son aplicables a todos los experimentos, incluso si son cápsulas a bajas temperaturas o si llevan recubrimientos antipermeación. Desde un punto de vista de seguridad, el conocimiento de la cantidad de tritio que está siendo transportada con el gas de purga puede ser usado para detectar de ciertos problemas que puedan estar sucediendo en el módulo como por ejemplo, la rotura de una cápsula. Además, es necesario conocer el balance de tritio de la instalación. Las pérdidas esperadas el refrigerante y la celda caliente de IFMIF se pueden considerar despreciables para condiciones normales de funcionamiento. Los cálculos termohidráulicos se han realizado con el objetivo de optimizar el diseño de las cápsulas experimentales y el LBVM de manera que se pueda cumplir el principal requisito del módulo que es llevar a cabo los experimentos a temperaturas comprendidas entre 300-550ºC. Para ello, se ha dimensionado la refrigeración necesaria del módulo y evaluado la geometría de las cápsulas, tubos experimentales y la zona experimental del contenedor. Como consecuencia de los análisis realizados, se han elegido cápsulas y tubos cilíndricos instalados en compartimentos cilíndricos debido a su buen comportamiento mecánico (las tensiones debidas a la presión de los fluidos se ven reducidas significativamente con una geometría cilíndrica en lugar de prismática) y térmico (uniformidad de temperatura en las paredes de los tubos y cápsulas). Se han obtenido campos de presión, temperatura y velocidad en diferentes zonas críticas del módulo concluyendo que la presente propuesta es factible. Cabe destacar que el uso de códigos fluidodinámicos (e.g. ANSYS-CFX, utilizado en esta tesis) para el diseño de cápsulas experimentales de IFMIF no es directo. La razón de ello es que los modelos de turbulencia tienden a subestimar la temperatura de pared en mini canales de helio sometidos a altos flujos de calor debido al cambio de las propiedades del fluido cerca de la pared. Los diferentes modelos de turbulencia presentes en dicho código han tenido que ser estudiados con detalle y validados con resultados experimentales. El modelo SST (del inglés, “Shear Stress Transport Model”) para turbulencia en transición ha sido identificado como adecuado para simular el comportamiento del helio de refrigeración y la temperatura en las paredes de las cápsulas experimentales. Con la geometría propuesta y los valores principales de refrigeración y purga definidos, se ha analizado el comportamiento mecánico de cada uno de los tubos experimentales que contendrá el módulo. Los resultados de tensiones obtenidos, han sido comparados con los valores máximos recomendados en códigos de diseño estructural como el SDC-IC (del inglés, “Structural Design Criteria for ITER Components”) para así evaluar el grado de protección contra el colapso plástico. La conclusión del estudio muestra que la propuesta es mecánicamente robusta. El LBVM implica el uso de metales líquidos y la generación de tritio además del riesgo asociado a la activación neutrónica. Por ello, se han estudiado los riesgos asociados al uso de metales líquidos y el tritio. Además, se ha incluido una evaluación preliminar de los riesgos radiológicos asociados a la activación de materiales y el calor residual en el módulo después de la irradiación así como un escenario de pérdida de refrigerante. Los riesgos asociados al módulo de naturaleza convencional están asociados al manejo de metales líquidos cuyas reacciones con aire o agua se asocian con emisión de aerosoles y probabilidad de fuego. De entre los riesgos nucleares destacan la generación de gases radiactivos como el tritio u otros radioisótopos volátiles como el Po-210. No se espera que el módulo suponga un impacto medioambiental asociado a posibles escapes. Sin embargo, es necesario un manejo adecuado tanto de las cápsulas experimentales como del módulo contenedor así como de las líneas de purga durante operación. Después de un día de después de la parada, tras un año de irradiación, tendremos una dosis de contacto de 7000 Sv/h en la zona experimental del contenedor, 2300 Sv/h en la cápsula y 25 Sv/h en el LiPb. El uso por lo tanto de manipulación remota está previsto para el manejo del módulo irradiado. Por último, en esta tesis se ha estudiado también las posibilidades existentes para la fabricación del módulo. De entre las técnicas propuestas, destacan la electroerosión, soldaduras por haz de electrones o por soldadura láser. Las bases para el diseño final del LBVM han sido pues establecidas en el marco de este trabajo y han sido incluidas en el diseño intermedio de IFMIF, que será desarrollado en el futuro, como parte del diseño final de la instalación IFMIF. ABSTRACT Nuclear fusion is, today, an alternative energy source to which the international community devotes a great effort. The goal is to generate 10 to 50 times more energy than the input power by means of fusion reactions that occur in deuterium (D) and tritium (T) plasma at two hundred million degrees Celsius. In the future commercial reactors it will be necessary to breed the tritium used as fuel in situ, by the reactor itself. This constitutes a step further from current experimental machines dedicated mainly to the study of the plasma physics. Therefore, tritium, in fusion reactors, will be produced in the so-called breeder blankets whose primary mission is to provide neutron shielding, produce and recover tritium and convert the neutron energy into heat. There are different concepts of breeding blankets that can be separated into two main categories: solids or liquids. The former are based on ceramics containing lithium as Li2O , Li4SiO4 , Li2TiO3 , Li2ZrO3 and Be, used as a neutron multiplier, required to achieve the required amount of tritium. The liquid concepts are based on molten salts or liquid metals as pure Li, LiPb, FLIBE or FLINABE. These blankets use, as neutron multipliers, Be or Pb (in the case of the concepts based on LiPb). Proposed structural materials comprise various options, always with low activation characteristics, as low activation ferritic-martensitic steels, vanadium alloys or even SiCf/SiC. Each concept of breeding blanket has specific challenges that will be studied in the experimental reactor ITER (International Thermonuclear Experimental Reactor). However, ITER cannot answer questions associated to material damage and the effect of neutron radiation in the different breeding blankets functions and performance. As a reference, the first wall of a fusion reactor of 4000 MW will receive about 30 dpa / year (values for Fe-56) , while values expected in ITER would be <10 dpa in its entire lifetime. Consequently, the irradiation effects on candidate materials for fusion reactors will be studied in IFMIF (International Fusion Material Irradiation Facility). This thesis fits in the framework of the bilateral agreement among Europe and Japan which is called “Broader Approach Agreement “(BA) (2007-2017) where Spain plays a key role. These projects, complementary to ITER, are mainly IFMIF and the fusion facility JT-60SA. The purpose of this thesis is the design of an irradiation module to test candidate materials for breeding blankets in IFMIF, the so-called Liquid Breeder Validation Module (LBVM). This proposal is born from the fact that this option was not considered in the conceptual design of the facility. As a first step, in order to study the feasibility of this proposal, neutronic calculations have been performed to estimate irradiation parameters in different materials foreseen for liquid breeding blankets. Various functional materials were considered: Fe (base of structural materials), SiC (candidate material for flow channel inserts, SiO2 (candidate for antipermeation coatings), CaO (candidate for insulating coatings), Al2O3 (candidate for antipermeation and insulating coatings) and AlN (candidate for insulation coating material). For each material, the most significant irradiation parameters have been calculated (dpa, H/dpa and He/dpa) in different positions of IFMIF. These values were compared to those expected in the first wall and breeding zone of a fusion reactor. For this exercise, a HCLL (Helium Cooled Lithium Lead) type was selected as it is one of the most promising options. In addition, estimated values were also compared with those obtained in a fast fission reactor since most of existing irradiations have been made in these installations. The main conclusion of this study is that the medium flux area of IFMIF offers a good irradiation environment to irradiate functional materials for liquid breeding blankets. The obtained ratios of H/dpa and He/dpa are very similar to those expected in the most irradiated areas of a fusion reactor. Moreover, with the aim of bringing the values further close, the use of a W moderator is proposed to be used only in some experimental campaigns (as obviously, the total amount of dpa decreases). The values of ratios obtained for a fission reactor, much lower than in a fusion reactor, reinforce the need of LBVM for IFMIF. Having demonstrated the suitability of IFMIF to irradiate functional materials for liquid breeding blankets, and an analysis of the main problems associated to each type of liquid breeding blanket, also presented in this thesis, three different experiments are proposed as basis for the design of the LBVM. These experiments are dedicated to the needs of a blanket HCLL type although the applicability of the module for other blankets is also discussed. Therefore, the experimental capability of the module is focused on the study of the behavior of the eutectic alloy LiPb, tritium permeation, corrosion and material compatibility. For each of the experiments proposed an experimental scheme is given explaining the different module conditions and defining the required instrumentation to control and monitor the experimental capsules. In order to carry out the proposed experiments, the LBVM is proposed, located in the medium flux area of the IFMIF hot cell, with capability of up to 16 experimental capsules. Each capsule (24-22 mm of diameter, 80 mm high) will contain the eutectic allow LiPb (up to 50 mm of capsule high) in contact with different material specimens. They will be supported inside rigs or steel pipes. Helium will be used as purge gas, to sweep the tritium generated in the eutectic and permeated through the capsule walls (continuously, during irradiation). These tubes, will be installed in a steel container providing support and cooling for the tubes and hence the inner experimental capsules. The experimental data will consist of on line monitoring signals and the analysis of purge gas by the tritium measurement station. In addition to the experimental signals, the module will produce signals having a safety function and therefore playing a major role in the operation of the module. For an adequate operation of the capsules and to control its temperature, each capsule will be equipped with an electrical heater so the module will to be connected to an electrical power supply. The technical justification behind the dimensioning of each of these parts forming the module is presented supported by tritium transport calculations, thermalhydraulic and structural analysis. One of the main conclusions of the tritium transport calculations is that the measure of the permeated tritium is perfectly achievable by commercial ionization chambers and proportional counters with sensitivity of 10-9 Bq/m3. The results are applicable to all experiments, even to low temperature capsules or to the ones using antipermeation coatings. From a safety point of view, the knowledge of the amount of tritium being swept by the purge gas is a clear indicator of certain problems that may be occurring in the module such a capsule rupture. In addition, the tritium balance in the installation should be known. Losses of purge gas permeated into the refrigerant and the hot cell itself through the container have been assessed concluding that they are negligible for normal operation. Thermal hydraulic calculations were performed in order to optimize the design of experimental capsules and LBVM to fulfill one of the main requirements of the module: to perform experiments at uniform temperatures between 300-550ºC. The necessary cooling of the module and the geometry of the capsules, rigs and testing area of the container were dimensioned. As a result of the analyses, cylindrical capsules and rigs in cylindrical compartments were selected because of their good mechanical behavior (stresses due to fluid pressure are reduced significantly with a cylindrical shape rather than prismatic) and thermal (temperature uniformity in the walls of the tubes and capsules). Fields of pressure, temperature and velocity in different critical areas of the module were obtained concluding that the proposal is feasible. It is important to mention that the use of fluid dynamic codes as ANSYS-CFX (used in this thesis) for designing experimental capsules for IFMIF is not direct. The reason for this is that, under strongly heated helium mini channels, turbulence models tend to underestimate the wall temperature because of the change of helium properties near the wall. Therefore, the different code turbulence models had to be studied in detail and validated against experimental results. ANSYS-CFX SST (Shear Stress Transport Model) for transitional turbulence model has been identified among many others as the suitable one for modeling the cooling helium and the temperature on the walls of experimental capsules. Once the geometry and the main purge and cooling parameters have been defined, the mechanical behavior of each experimental tube or rig including capsules is analyzed. Resulting stresses are compared with the maximum values recommended by applicable structural design codes such as the SDC- IC (Structural Design Criteria for ITER Components) in order to assess the degree of protection against plastic collapse. The conclusion shows that the proposal is mechanically robust. The LBVM involves the use of liquid metals, tritium and the risk associated with neutron activation. The risks related with the handling of liquid metals and tritium are studied in this thesis. In addition, the radiological risks associated with the activation of materials in the module and the residual heat after irradiation are evaluated, including a scenario of loss of coolant. Among the identified conventional risks associated with the module highlights the handling of liquid metals which reactions with water or air are accompanied by the emission of aerosols and fire probability. Regarding the nuclear risks, the generation of radioactive gases such as tritium or volatile radioisotopes such as Po-210 is the main hazard to be considered. An environmental impact associated to possible releases is not expected. Nevertheless, an appropriate handling of capsules, experimental tubes, and container including purge lines is required. After one day after shutdown and one year of irradiation, the experimental area of the module will present a contact dose rate of about 7000 Sv/h, 2300 Sv/h in the experimental capsules and 25 Sv/h in the LiPb. Therefore, the use of remote handling is envisaged for the irradiated module. Finally, the different possibilities for the module manufacturing have been studied. Among the proposed techniques highlights the electro discharge machining, brazing, electron beam welding or laser welding. The bases for the final design of the LBVM have been included in the framework of the this work and included in the intermediate design report of IFMIF which will be developed in future, as part of the IFMIF facility final design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente proyecto tiene como objetivo la realización de un cuadricóptero de bajo coste desarrollado con herramientas de software libre, con el fin de permitir el acceso y modificación del mismo a cualquiera que posea los conocimientos necesarios. Los cuadricópteros se definen como un vehículo aéreo no tripulado con cuatro rotores en los extremos. Los ejemplos existentes de estos tipos de vehículos son casi siempre de grandes cuadricópteros, los cuales utilizan diferentes tecnologías en los motores y control de los mismos. Los cuadricópteros de similar tamaño al que se pretende realizar son por lo general de compañías con hardware y software cerrado. En el caso de este proyecto se ha realizado un cuadricóptero de tamaño menor a 5 x 5 cm. La innovación que se propone con este proyecto es una forma de detectar obstáculos para cuadricópteros de tamaño similar, en los que la limitación del peso del dron supone una disminución de las opciones disponibles. Se desea que el cuadricóptero sea capaz de realizar un vuelo estable detectando y esquivando obstáculos sin necesidad de ayuda externa como operadores con mando de radio frecuencia. Para la creación del cuadricóptero, se ha realizado tanto el diseño de los esquemáticos como el diseño de las huellas para la utilización en el desarrollo de la PCB. Para ello se ha hecho uso de herramientas de software libre como es Kicad, software para el desarrollo de esquemáticos y placas de circuito impreso con las funcionalidades principales de cualquier software privativo relacionado. Se pretende de esta forma aportar a la literatura, un aspecto práctico de la realización de cuadricópteros, tanto desde los aspectos teóricos del diseño como los aspectos prácticos de la fabricación y soldadura de los componentes del cuadricóptero. En la realización del presente proyecto se ha tenido en cuenta los diferentes algoritmos que existen para la fusión de datos de la unidad de medida inercial, tanto la facilidad de implementación de los mismos como la facilidad de los cálculos resultantes de esta implementación. Se ha hecho una implementación de un filtro complementario, dando resultados satisfactorios debido a las características intrínsecas de la unidad de medida inercial. Además del filtro complementario, se ha realizado una implementación del filtro diseñado por Sebastian Madgwick [1]. Este filtro está especialmente diseñado para la fusión de los datos provenientes de la unidad de medida inercial, proporcionando la orientación del sistema haciendo uso de la representación en cuaternios de los datos del acelerómetro y giróscopo, permitiendo el uso del método del gradiente para el cálculo del error del giróscopo. Para la selección de los componentes, se ha hecho un análisis pormenorizado de las diferentes opciones disponibles, tomando como punto de partida los cuadricópteros que existen en la actualidad. Se han elegido estos componentes en función de las características de los mismos, prestando especial atención al tamaño, relacionado directamente con el peso de los mismos así como del precio, para lograr un cuadricóptero fácilmente reproducible de bajo coste. En este análisis se ha tenido en cuenta las dificultades existentes en la selección de determinados componentes como son los motores y las hélices. Al ser estos dos componentes caracterizados mediante tablas creadas por los fabricantes y usuarios de los mismos, la selección de los mismos se ha visto dificultada a la hora de elegir componentes de coste reducido al poseer poca información sobre los mismos. En especial, las formulas desarrolladas para el cálculo del empuje de los motores están directamente relacionados con los parámetros de las hélices. Estos parámetros están caracterizados para la mayoría de las hélices comerciales utilizadas en cuadricópteros. Para caracterizar las hélices se utiliza un banco de trabajo en donde es posible medir el empuje realizado por el conjunto del motor y hélice. En el caso del presente proyecto, no se disponía de la herramienta necesaria por lo que se ha realizado una estimación de los parámetros en función de las tablas disponibles para hélices similares de mayor tamaño. Para la elección de los sensores para la detección de los obstáculos se ha realizado un estudio de los diferentes sensores disponibles, analizando las ventajas y desventajas de los mismos para la elección del más adecuado para el proyecto. Se ha decidido el uso de sensores de distancia basados en tecnología infrarroja por ser los únicos que se adaptan a los requisitos de peso impuesto por el modelo. Además en este proyecto se ha realizado el montaje y soldadura de los componentes de la PCB. Estos componentes al ser de tamaño reducido, se ha comprobado que para la soldadura de los mismos es necesario el uso de herramientas especializadas, como puede ser estaciones de soldadura y pistola de aire caliente lo que dificulta su soldadura de manera no profesional. Al término de este proyecto se ha comprobado la dificultad de la realización de una correcta soldadura de los componentes, lo que introduce errores de conectividad entre los componentes, en concreto se ha detectado errores entre el microprocesador y unidad de medida inercial. Además de estos errores, se ha comprobado la dificultad de regular el sistema, no logrando un vuelo estable en el tiempo de escritura del presente proyecto. Por último se presenta el prototipo creado a lo largo del proyecto, al cual se le pueden hacer diferentes modificaciones como posibles líneas futuras, entre las que se encuentran una mejor regulación que permita el vuelo de un conjunto de drones.