30 resultados para road crash analysis
Resumo:
Public Private Partnerships (PPPs) are mostly implemented to circumvent budgetary constraints, and to encourage efficiency and quality in the provision of public infrastructure in order to reach social welfare. One of the ways of reaching the latter objective is by the introduction of performance based standards tied to bonuses and penalties to reward or punish the performance of the contractor. This paper focuses on the implementation of safety based incentives in PPPs in such a way that the better the safety outcome the greater larger will be the economic reward to the contractor. The main aim of this paper is to identify whether the incentives to improve road safety in PPPs are ultimately effective in improving safety ratios in Spain. To that end, Poisson and negative binomial regression models have been applied using information of motorways of the Spanish network of 2006. The findings indicate that even though road safety is highly influenced by variables that are not much controllable by the contractor such as the Average Annual Daily Traffic and the percentage of heavy vehicles, the implementation of safety incentives in PPPs has a positive influence in the reduction of fatalities, injuries and accidents.
Resumo:
This study introduces the concept design and analysis of a robotic system for the assistance and rehabilitation of disabled people. Based on the statistical data of the most common types of disabilities in Spain and other industrialized countries, the different tasks that the device must be able to perform have been determined. In this study, different robots for rehabilitation and assistance previously introduced have been reviewed. This survey is focused on those robots that assist with gait, balance and standing up. The structure of the ROAD robot presents various advantages over these robots, we discuss some of them. The performance of the proposed architecture is analyzed when it performs the sit to stand activity.
Resumo:
The road to the automation of the agricultural processes passes through the safe operation of the autonomous vehicles. This requirement is a fact in ground mobile units, but it still has not well defined for the aerial robots (UAVs) mainly because the normative and legislation are quite diffuse or even inexistent. Therefore, to define a common and global policy is the challenge to tackle. This characterization has to be addressed from the field experience. Accordingly, this paper presents the work done in this direction, based on the analysis of the most common sources of hazards when using UAV's for agricultural tasks. The work, based on the ISO 31000 normative, has been carried out by applying a three-step structure that integrates the identification, assessment and reduction procedures. The present paper exposes how this method has been applied to analyze previous accidents and malfunctions during UAV operations in order to obtain real failure causes. It has allowed highlighting common risks and hazardous sources and proposing specific guards and safety measures for the agricultural context.
Resumo:
The goal of this paper is to evaluate whether the incentives incorporated in toll highway concession contracts in order to encourage private operators to adopt measures to reduce accidents are actually effective at improving safety. To this end, we implemented negative binomial regression models using information about highway characteristics and accident data from toll highway concessions in Spain from 2007 to 2009. Our results show that even though road safety is highly influenced by variables that are not managed by the contractor, such as the annual average daily traffic (AADT), the percentage of heavy vehicles on the highway, number of lanes, number of intersections and average speed; the implementation of these incentives has a positive influence on the reduction of accidents and injuries. Consequently, this measure seems to be an effective way of improving safety performance in road networks.
Resumo:
Sight distance is of major importance for road safety either when designing new roads or analysing the alignment of existing roads. It is essential that available sight distance in roads is long enough for emergency stops or overtaking manoeuvres. Also, it is vital for engineers/researchers that the tools used for that analysis are both powerful and intuitive. Based on ArcGIS, the application to be presented not only performs an exhaustive sight distance calculation, but allows an accurate analysis of 3D alignment, using all new tools, from a Digital Elevation Model and vehicle trajectory. The software has been successfully utilised to analyse several two-lane rural roads in Spain. In addition, the software produces thematic maps representing sight distance in which supplementary information about crashes, traffic flow, speed or design consistency could be included, allowing traffic safety studies.
Resumo:
In this paper we present an innovative technique to tackle the problem of automatic road sign detection and tracking using an on-board stereo camera. It involves a continuous 3D analysis of the road sign during the whole tracking process. Firstly, a color and appearance based model is applied to generate road sign candidates in both stereo images. A sparse disparity map between the left and right images is then created for each candidate by using contour-based and SURF-based matching in the far and short range, respectively. Once the map has been computed, the correspondences are back-projected to generate a cloud of 3D points, and the best-fit plane is computed through RANSAC, ensuring robustness to outliers. Temporal consistency is enforced by means of a Kalman filter, which exploits the intrinsic smoothness of the 3D camera motion in traffic environments. Additionally, the estimation of the plane allows to correct deformations due to perspective, thus easing further sign classification.
Resumo:
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.
Resumo:
Road traffic is the greatest contributor to the carbon footprint of the transport sector and reducing it has become one of the main targets of sustainable transport policies. An analysis of the main factors influencing greenhouse gas (GHG) emissions is essential for designing new energy- and environmentally efficient strategies for the road transport. This paper addresses this need by (i) identifying factors which influence the carbon footprint, including traffic activity, fuel economy and socioeconomic development; and (ii) proposing a methodological framework which uses Modified Laspeyres Index decomposition to analyze the effect of important drivers on the changes in emissions of road transport in Spain during the period from 1990 to 2010. The results demonstrate that the country׳s economic growth has been closely linked to the rise in GHG emissions. The innovative contribution of this paper is the special analysis of the changes in mobility patterns and GHG emissions during the economic crisis, when, for the first time, Spanish road traffic emissions decreased. The reduction of road transport and improved energy efficiency has been powerful contributors to this decrease, demonstrating the effectiveness of energy-saving measures. On the basis of this analysis, several tailored policy recommendations have been suggested for future implementation.
Resumo:
Using the Bayesian approach as the model selection criteria, the main purpose in this study is to establish a practical road accident model that can provide a better interpretation and prediction performance. For this purpose we are using a structural explanatory model with autoregressive error term. The model estimation is carried out through Bayesian inference and the best model is selected based on the goodness of fit measures. To cross validate the model estimation further prediction analysis were done. As the road safety measures the number of fatal accidents in Spain, during 2000-2011 were employed. The results of the variable selection process show that the factors explaining fatal road accidents are mainly exposure, economic factors, and surveillance and legislative measures. The model selection shows that the impact of economic factors on fatal accidents during the period under study has been higher compared to surveillance and legislative measures.
Resumo:
Atmospheric emissions from road transport have increased all around the world during the last decades more rapidly than from other pollution sources. For instance, they contribute to more than 25% of total CO, CO2, NOx, and fine particle emissions in most of the European countries. This situation shows the importance of road transport when complying with emission ceilings and air quality standards applied to these pollutants. This paper presents a modelling system to perform atmospheric emission projections (simultaneously both air quality pollutants and greenhouse gases) from road transport including the development of a tailored software tool (EmiTRANS) as a planning tool. The methodology has been developed with two purposes: 1) to obtain outputs used as inputs to the COPERT4 software to calculate emission projections and 2) to summarize outputs for policy making evaluating the effect of emission abatement measures for a vehicle fleet. This methodology has been applied to the calculation of emission projections in Spain up to 2020 under several scenarios, including a sensitivity analysis useful for a better interpretation and confidence building on the results. This case study demonstrates the EmiTRANS applicability to a country, and points out the need for combining both technical and non-technical measures (such as behavioural changes or demand management) to reduce emissions, indirectly improving air quality and contributing to mitigate climate change.
Resumo:
Tolls have increasingly become a common mechanism to fund road projects in recent decades. Therefore, improving knowledge of demand behavior constitutes a key aspect for stakeholders dealing with the management of toll roads. However, the literature concerning demand elasticity estimates for interurban toll roads is still limited due to their relatively scarce number in the international context. Furthermore, existing research has left some aspects to be investigated, among others, the choice of GDP as the most common socioeconomic variable to explain traffic growth over time. This paper intends to determine the variables that better explain the evolution of light vehicle demand in toll roads throughout the years. To that end, we establish a dynamic panel data methodology aimed at identifying the key socioeconomic variables explaining changes in light vehicle demand over time. The results show that, despite some usefulness, GDP does not constitute the most appropriate explanatory variable, while other parameters such as employment or GDP per capita lead to more stable and consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period, which constitutes a very interesting case on variations in toll road use, as road demand has experienced a significant decrease since the beginning of the economic crisis in 2008.
Resumo:
The introduction of a homogeneous road charging system according to the Directive 2011/76/EU for the use of roads is still under development in most European Union (EU) member states. Spain, like other EU members, has been encouraged to introduce a charging system for Heavy Goods Vehicles (HGVs) throughout the country. This nationwide charge has been postponed because there are serious concerns about their advantages from an economic point of view. Within this context, this paper applies an integrated modeling approach to shape elastic trade coefficients among regions by using a random utility based multiregional Input- Output (RUBMRIO) approach and a road transport network model in order to determine regional distributive and substitutive economic effects by simulating the introduction of a distance-based charge (?/km) considering 7,053.8 kilometers of free highways linking the capitals of the Spanish regions. In addition, an in-depth analysis of interregional trade changes is developed to evaluate and characterize the role of the road charging approach in trade relations among regions and across freight intensive economic sectors. For this purpose, differences in trade relations are described and assessed between a base-case or ?do nothing? scenario and a road fee-charge setting scenario. The results show that the specific amount of the charge set for HGVs affect each region differently and to a different extent because in some regions the price of commodities and the Generalized Transport Cost will decrease its competiveness within the country.
Resumo:
The assessment on introducing Longer and Heavier Vehicles (LHVs) on the road freight transport demand is performed in this paper by applying an integrated modeling approach composed of a Random Utility-Based Multiregional Input-Output model (RUBMRIO) and a road transport network model. The approach strongly supports the concept that changes in transport costs derived from the LHVs allowance as well as the economic structure of regions have both direct and indirect effects on the road freight transport system. In addition, we estimate the magnitude and extent of demand changes in the road freight transportation system by using the commodity-based structure of the approach to identify the effect on traffic flows and on pollutant emissions over the whole network of Spain by considering a sensitivity analysis of the main parameters which determine the share of Heavy-Goods Vehicles (HGVs) and LHVs. The results show that the introduction of LHVs will strengthen the competitiveness of the road haulage sector by reducing costs, emissions, and the total freight vehicles required.
Resumo:
Vision-based object detection from a moving platform becomes particularly challenging in the field of advanced driver assistance systems (ADAS). In this context, onboard vision-based vehicle verification strategies become critical, facing challenges derived from the variability of vehicles appearance, illumination, and vehicle speed. In this paper, an optimized HOG configuration for onboard vehicle verification is proposed which not only considers its spatial and orientation resolution, but descriptor processing strategies and classification. An in-depth analysis of the optimal settings for HOG for onboard vehicle verification is presented, in the context of SVM classification with different kernels. In contrast to many existing approaches, the evaluation is realized in a public and heterogeneous database of vehicle and non-vehicle images in different areas of the road, rendering excellent verification rates that outperform other similar approaches in the literature.
Resumo:
The global economic structure, with its decentralized production and the consequent increase in freight traffic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port installations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the transport chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with the objective of transferring the largest volume of goods possible from road to more energy efficient means of transport, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate a dry port must also ensure the sustainability of the site. Thus, the main goal of this article is to research the variables influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in this paper we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Decision Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable according to the relationships established in the set of variables. In order to determine the relationships between all the variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics platforms, we found that the most important variables for achieving sustainability are those related to environmental protection, so the sustainability of the locations requires a great respect for the natural environment and the urban environment in which they are framed.