52 resultados para rail wheel flat, vibration monitoring, wavelet approaches, daubechies wavelets, signal processing
Resumo:
Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.
Resumo:
El objetivo principal del presente proyecto es proporcionar al ingeniero de telecomunicaciones una visión general de las técnicas que se utilizan en el modelado del sistema auditivo. El modelado del sistema auditivo se realiza con los siguientes objetivos: a) Interpretar medidas directas, b)unificar el entendimiento de diferentes fenómenos, c) guiar estrategias de amplificación para suplir pérdidas auditivas y d) tener predicciones experimentalmente comprobables de comportamientos, con diferentes niveles de complejidad. En este trabajo se tratarán y explicarán brevemente las diferentes técnicas utilizadas para modelar las partes del sistema auditivo, desde las analogías electroacústicas, modelos biofísicos, binaurales, hasta la implementación de filtros auditivos mediante procesado de señal. Podemos concluir que el modelado mediante analogías electroacústicas permite una rápida implementación y entendimiento, pero tiene ciertas limitaciones. Las simulaciones mediante análisis numéricos son precisas y de gran utilidad tanto para del oído medio como para el interno. El procesado de señal es el procedimiento más completo y utilizado ya que permite modelar oído externo y medio además de permitir la implementación de filtros cocleares muy precisos y coherentes con la realidad incluyéndolos en modelos perceptivos. ABSTRACT. The main aim of the Project is to provide the Telecommunications Engineer an overview about the approaches for modelling the auditory system. The auditory system modelling is done for the next objectives: a) Interpret direct measures, b) Understand different phenomena c) get strategies of amplification for hearing impaired people and d) Obtain testable predictions experimentally about some behaviors with different complexity levels. Inside this document, several approaches about modeling of the auditory system parts will be explained: analog circuits, biophysics models, binaural models, and auditory filters made through signal processing. In conclusion, analog circuits are made quickly and they are easier to understand but they have many limitations. Simulations through numerical analysis are accurate and useful in middle and inner ear models. Signal processing is the more versatile approach because it lets to make a model of external and middle ear and then it allows to make complex auditory filters. Perceptive models can be made entirely through this method.
Resumo:
La artroplastia de cadera se considera uno de los mayores avances quirúrgicos de la Medicina. La aplicación de esta técnica de Traumatología se ha incrementado notablemente en los últimos anos, a causa principalmente del progresivo incremento de la esperanza de vida. En efecto, con la edad aumentan los problemas de artrosis y osteoporosis, enfermedades típicas de las articulaciones y de los huesos que requieren en muchos casos la sustitución protésica total o parcial de la articulación. El buen comportamiento funcional de una prótesis depende en gran medida de la estabilidad primaria, es decir, el correcto anclaje de la prótesis en el momento de su implantación. Las prótesis no cementadas basan su éxito a largo plazo en la osteointegración que tiene lugar entre el material protésico y el tejido óseo, y para lograrla es imprescindible conseguir unas buenas condiciones de estabilidad primaria. El aflojamiento aséptico es la principal causa de fallo de artroplastia total de cadera. Este es un fenómeno en el que, debido a complejas interacciones de factores mecánicos y biológicos, se producen movimientos relativos que comprometen la funcionalidad del implante. La minimización de los correspondientes danos depende en gran medida de la detección precoz del aflojamiento. Para lograr la detección temprana del aflojamiento aséptico del vástago femoral se han ensayado diferentes técnicas, tanto in vivo como in vitro: análisis numéricos y técnicas experimentales basadas en sensores de movimientos provocados por cargas transmitidas natural o artificialmente, tales como impactos o vibraciones de distintas frecuencias. Los montajes y procedimientos aplicados son heterogéneos y, en muchas ocasiones, complejos y costosos, no existiendo acuerdo sobre una técnica simple y eficaz de aplicación general. Asimismo, en la normativa vigente que regula las condiciones que debe cumplir una prótesis previamente a su comercialización, no hay ningún apartado referido específicamente a la evaluación de la bondad del diseño del vástago femoral con respecto a la estabilidad primaria. El objetivo de esta tesis es desarrollar una metodología para el análisis, in vitro, de la estabilidad de un vástago femoral implantado, a fin de poder evaluar las técnicas de implantación y los diferentes diseños de prótesis previamente a su oferta en el mercado. Además se plantea como requisito fundamental que el método desarrollado sea sencillo, reversible, repetible, no destructivo, con control riguroso de parámetros (condiciones de contorno de cargas y desplazamientos) y con un sistema de registro e interpretación de resultados rápido, fiable y asequible. Como paso previo, se ha realizado un análisis cualitativo del problema de contacto en la interfaz hueso-vástago aplicando una técnica optomecánica del campo continuo (fotoelasticidad). Para ello se han fabricado tres modelos en 2D del conjunto hueso-vástago, simulando tres tipos de contactos en la interfaz: contacto sin adherencia y con holgura, contacto sin adherencia y sin holgura, y contacto con adherencia y homogéneo. Aplicando la misma carga a cada modelo, y empleando la técnica de congelación de tensiones, se han visualizado los correspondientes estados tensionales, siendo estos más severos en el modelo de unión sin adherencia, como cabía esperar. En todo caso, los resultados son ilustrativos de la complejidad del problema de contacto y confirman la conveniencia y necesidad de la vía experimental para el estudio del problema. Seguidamente se ha planteado un ensayo dinámico de oscilaciones libres con instrumentación de sensores resistivos tipo galga extensométrica. Las muestras de ensayo han sido huesos fémur en todas sus posibles variantes: modelos simplificados, hueso sintético normalizado y hueso de cadáver, seco y fresco. Se ha diseñado un sistema de empotramiento del extremo distal de la muestra (fémur) con control riguroso de las condiciones de anclaje. La oscilación libre de la muestra se ha obtenido mediante la liberación instantánea de una carga estética determinada y aplicada previamente, bien con una maquina de ensayo o bien por gravedad. Cada muestra se ha instrumentado con galgas extensométricas convencionales cuya señal se ha registrado con un equipo dinámico comercial. Se ha aplicado un procedimiento de tratamiento de señal para acotar, filtrar y presentar las respuestas de los sensores en el dominio del tiempo y de la frecuencia. La interpretación de resultados es de tipo comparativo: se aplica el ensayo a una muestra de fémur Intacto que se toma de referencia, y a continuación se repite el ensayo sobre la misma muestra con una prótesis implantada; la comparación de resultados permite establecer conclusiones inmediatas sobre los efectos de la implantación de la prótesis. La implantación ha sido realizada por un cirujano traumatólogo utilizando las mismas técnicas e instrumental empleadas en el quirófano durante la práctica clínica real, y se ha trabajado con tres vástagos femorales comerciales. Con los resultados en el dominio del tiempo y de la frecuencia de las distintas aplicaciones se han establecido conclusiones sobre los siguientes aspectos: Viabilidad de los distintos tipos de muestras sintéticas: modelos simplificados y fémur sintético normalizado. Repetibilidad, linealidad y reversibilidad del ensayo. Congruencia de resultados con los valores teóricos deducidos de la teoría de oscilaciones libres de barras. Efectos de la implantación de tallos femorales en la amplitud de las oscilaciones, amortiguamiento y frecuencias de oscilación. Detección de armónicos asociados a la micromovilidad. La metodología se ha demostrado apta para ser incorporada a la normativa de prótesis, es de aplicación universal y abre vías para el análisis de la detección y caracterización de la micromovilidad de una prótesis frente a las cargas de servicio. ABSTRACT Total hip arthroplasty is considered as one of the greatest surgical advances in medicine. The application of this technique on Traumatology has increased significantly in recent years, mainly due to the progressive increase in life expectancy. In fact, advanced age increases osteoarthritis and osteoporosis problems, which are typical diseases of joints and bones, and in many cases require full or partial prosthetic replacement on the joint. Right functional behavior of prosthesis is highly dependent on the primary stability; this means it depends on the correct anchoring of the prosthesis at the time of implantation. Uncemented prosthesis base their long-term success on the quality of osseointegration that takes place between the prosthetic material and bone tissue, and to achieve this good primary stability conditions is mandatory. Aseptic loosening is the main cause of failure in total hip arthroplasty. This is a phenomenon in which relative movements occur, due to complex interactions of mechanical and biological factors, and these micromovements put the implant functionality at risk. To minimize possible damage, it greatly depends on the early detection of loosening. For this purpose, various techniques have been tested both in vivo and in vitro: numerical analysis and experimental techniques based on sensors for movements caused by naturally or artificially transmitted loads, such as impacts or vibrations at different frequencies. The assemblies and methods applied are heterogeneous and, in many cases, they are complex and expensive, with no agreement on the use of a simple and effective technique for general purposes. Likewise, in current regulations for governing the conditions to be fulfilled by the prosthesis before going to market, there is no specific section related to the evaluation of the femoral stem design in relation to primary stability. The aim of this thesis is to develop a in vitro methodology for analyzing the stability of an implanted femoral stem, in order to assess the implantation techniques and the different prosthesis designs prior to its offer in the market. We also propose as a fundamental requirement that the developed testing method should be simple, reversible, repeatable, non-destructive, with close monitoring of parameters (boundary conditions of loads and displacements) and with the availability of a register system to record and interpret results in a fast, reliable and affordable manner. As a preliminary step, we have performed a qualitative analysis of the contact problems in the bone-stem interface, through the application of a continuous field optomechanical technique (photoelasticity). For this proposal three 2D models of bone–stem set, has been built simulating three interface contact types: loosened an unbounded contact, unbounded and fixed contact, and bounded homogeneous contact. By means of applying the same load to each model, and using the stress freezing technique, it has displayed the corresponding stress states, being more severe as expected, in the unbounded union model. In any case, the results clearly show the complexity of the interface contact problem, and they confirm the need for experimental studies about this problem. Afterward a free oscillation dynamic test has been done using resistive strain gauge sensors. Test samples have been femur bones in all possible variants: simplified models, standardized synthetic bone, and dry and cool cadaveric bones. An embedding system at the distal end of the sample with strong control of the anchoring conditions has been designed. The free oscillation of the sample has been obtained by the instantaneous release of a static load, which was previously determined and applied to the sample through a testing machine or using the gravity force. Each sample was equipped with conventional strain gauges whose signal is registered with a marketed dynamic equipment. Then, it has applied a signal processing procedure to delimit, filter and present the time and frequency response signals from the sensors. Results are interpreted by comparing different trials: the test is applied to an intact femur sample which is taken as a reference, and then this test is repeated over the same sample with an implanted prosthesis. From comparison between results, immediate conclusions about the effects of the implantation of the prosthesis can be obtained. It must be said that the implementation has been made by an expert orthopedic surgeon using the same techniques and instruments as those used in clinical surgery. He has worked with three commercial femoral stems. From the results obtained in the time and frequency domains for the different applications the following conclusions have been established: Feasibility of the different types of synthetic samples: simplified models and standardized synthetic femur. Repeatability, linearity and reversibility of the testing method. Consistency of results with theoretical values deduced from the bars free oscillations theory. Effects of introduction of femoral stems in the amplitude, damping and frequencies of oscillations Detection of micromobility associated harmonics. This methodology has been proved suitable to be included in the standardization process of arthroplasty prosthesis, it is universally applicable and it allows establishing new methods for the analysis, detection and characterization of prosthesis micromobility due to functional loads.
Resumo:
We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices.
Resumo:
Modern Field Programmable Gate Arrays (FPGAs) are power packed with features to facilitate designers. Availability of features like huge block memory (BRAM), Digital Signal Processing (DSP) cores, embedded CPU makes the design strategy of FPGAs quite different from ASICs. FPGA are also widely used in security-critical application where protection against known attacks is of prime importance. We focus ourselves on physical attacks which target physical implementations. To design countermeasures against such attacks, the strategy for FPGA designers should also be different from that in ASIC. The available features should be exploited to design compact and strong countermeasures. In this paper, we propose methods to exploit the BRAMs in FPGAs for designing compact countermeasures. BRAM can be used to optimize intrinsic countermeasures like masking and dual-rail logic, which otherwise have significant overhead (at least 2X). The optimizations are applied on a real AES-128 co-processor and tested for area overhead and resistance on Xilinx Virtex-5 chips. The presented masking countermeasure has an overhead of only 16% when applied on AES. Moreover Dual-rail Precharge Logic (DPL) countermeasure has been optimized to pack the whole sequential part in the BRAM, hence enhancing the security. Proper robustness evaluations are conducted to analyze the optimization for area and security.
Resumo:
Neurological Diseases (ND) are affecting larger segments of aging population every year. Treatment is dependent on expensive accurate and frequent monitoring. It is well known that ND leave correlates in speech and phonation. The present work shows a method to detect alterations in vocal fold tension during phonation. These may appear either as hypertension or as cyclical tremor. Estimations of tremor may be produced by auto-regressive modeling of the vocal fold tension series in sustained phonation. The correlates obtained are a set of cyclicality coefficients, the frequency and the root mean square amplitude of the tremor. Statistical distributions of these correlates obtained from a set of male and female subjects are presented. Results from five study cases of female voice are also given.
Resumo:
Optical communications receivers using wavelet signals processing is proposed in this paper for dense wavelength-division multiplexed (DWDM) systems and modal-division multiplexed (MDM) transmissions. The optical signal-to-noise ratio (OSNR) required to demodulate polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) modulation format is alleviated with the wavelet denoising process. This procedure improves the bit error rate (BER) performance and increasing the transmission distance in DWDM systems. Additionally, the wavelet-based design relies on signal decomposition using time-limited basis functions allowing to reduce the computational cost in Digital-Signal-Processing (DSP) module. Attending to MDM systems, a new scheme of encoding data bits based on wavelets is presented to minimize the mode coupling in few-mode (FWF) and multimode fibers (MMF). The Shifted Prolate Wave Spheroidal (SPWS) functions are proposed to reduce the modal interference.
Resumo:
In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
In this work we review some earlier distributed algorithms developed by the authors and collaborators, which are based on two different approaches, namely, distributed moment estimation and distributed stochastic approximations. We show applications of these algorithms on image compression, linear classification and stochastic optimal control. In all cases, the benefit of cooperation is clear: even when the nodes have access to small portions of the data, by exchanging their estimates, they achieve the same performance as that of a centralized architecture, which would gather all the data from all the nodes.
Resumo:
Vision-based object detection from a moving platform becomes particularly challenging in the field of advanced driver assistance systems (ADAS). In this context, onboard vision-based vehicle verification strategies become critical, facing challenges derived from the variability of vehicles appearance, illumination, and vehicle speed. In this paper, an optimized HOG configuration for onboard vehicle verification is proposed which not only considers its spatial and orientation resolution, but descriptor processing strategies and classification. An in-depth analysis of the optimal settings for HOG for onboard vehicle verification is presented, in the context of SVM classification with different kernels. In contrast to many existing approaches, the evaluation is realized in a public and heterogeneous database of vehicle and non-vehicle images in different areas of the road, rendering excellent verification rates that outperform other similar approaches in the literature.
Resumo:
La teoría de reconocimiento y clasificación de patrones y el aprendizaje automático son actualmente áreas de conocimiento en constante desarrollo y con aplicaciones prácticas en múltiples ámbitos de la industria. El propósito de este Proyecto de Fin de Grado es el estudio de las mismas así como la implementación de un sistema software que dé solución a un problema de clasificación de ruido impulsivo, concretamente mediante el desarrollo de un sistema de seguridad basado en la clasificación de eventos sonoros en tiempo real. La solución será integral, comprendiendo todas las fases del proceso, desde la captación de sonido hasta el etiquetado de los eventos registrados, pasando por el procesado digital de señal y la extracción de características. Para su desarrollo se han diferenciado dos partes fundamentales; una primera que comprende la interfaz de usuario y el procesado de la señal de audio donde se desarrollan las labores de monitorización y detección de ruido impulsivo y otra segunda centrada únicamente en la clasificación de los eventos sonoros detectados, definiendo una arquitectura de doble clasificador donde se determina si los eventos detectados son falsas alarmas o amenazas, etiquetándolos como de un tipo concreto en este segundo caso. Los resultados han sido satisfactorios, mostrando una fiabilidad global en el proceso de entorno al 90% a pesar de algunas limitaciones a la hora de construir la base de datos de archivos de audio, lo que prueba que un dispositivo de seguridad basado en el análisis de ruido ambiente podría incluirse en un sistema integral de alarma doméstico aumentando la protección del hogar. ABSTRACT. Pattern classification and machine learning are currently expertise areas under continuous development and also with extensive applications in many business sectors. The aim of this Final Degree Project is to study them as well as the implementation of software to carry on impulsive noise classification tasks, particularly through the development of a security system based on sound events classification. The solution will go over all process stages, from capturing sound to the labelling of the events recorded, without forgetting digital signal processing and feature extraction, everything in real time. In the development of the Project a distinction has been made between two main parts. The first one comprises the user’s interface and the audio signal processing module, where monitoring and impulsive noise detection tasks take place. The second one is focussed in sound events classification tasks, defining a double classifier architecture where it is determined whether detected events are false alarms or threats, labelling them from a concrete category in the latter case. The obtained results have been satisfactory, with an overall reliability of 90% despite some limitations when building the audio files database. This proves that a safety device based on the analysis of environmental noise could be included in a full alarm system increasing home protection standards.
Resumo:
Flat or worn wheels rolling on rough or corrugated tracks can provoke airborne noise and ground-borne vibration, which can be a serious concern for nearby neighbours of urban rail transit lines. Among the various treatments used to reduce vibration and noise, resilient wheels play an important role. In conventional resilient wheels, a slightly prestressed Vshaped rubber ring is mounted between the steel wheel centre and tyre. The elastic layer enhances rolling noise and vibration suppression, as well as impact reduction on the track. In this paper the effectiveness of resilient wheels in underground lines, in comparison to monobloc ones, is assessed. The analysed resilient wheel is able to carry greater loads than standard resilient wheels used for light vehicles. It also presents a greater radial resiliency and a higher axial stiffness than conventional Vwheels. The finite element method was used in this study. A quarter car model was defined, in which the wheelset was modelled as an elastic body. Several simulations were performed in order to assess the vibrational behaviour of elastic wheels, including modal, harmonic and random vibration analysis, the latter allowing the introduction of realistic vertical track irregularities, as well as the influence of the running speed. Due to numerical problems some simplifications were needed. Parametric variations were also performed, in which the sensitivity of the whole system to variations of rubber prestress and Poisson’s ratio of the elastic material was assessed.Results are presented in the frequency domain, showing a better performance of the resilient wheels for frequencies over 200 Hz. This result reveals the ability of the analyzed design to mitigate rolling noise, but not structural vibrations, which are primarily found in the lower frequency range.
Resumo:
The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.
Resumo:
This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.