18 resultados para probiotic agent
Resumo:
The definition of an agent architecture at the knowledge level makes emphasis on the knowledge role played by the data interchanged between the agent components and makes explicit this data interchange this makes easier the reuse of these knowledge structures independently of the implementation This article defines a generic task model of an agent architecture and refines some of these tasks using the interference diagrams. Finally, a operationalisation of this conceptual model using the rule-oriented language Jess is shown. knowledge level,
Resumo:
In this paper we present AMSIA, an agent architecture that combines the possibility of using di erent reasoning methods with a mechanism to control the resources needed by the agent to ful ll its high level objectives. The architecture is based on the blackboard paradigm which o ers the possibility of combining di erent reasoning techniques and opportunistic behavior. The AMSIA architecture adds a representation of plans of objectives allowing di erent reasoning activities to create plans to guide the future behavior of the agent. The opportunism is in the acquisition of high-level objectives and in the modi cation of the predicted activity when something doesn't happen as expected. A control mechanism is responsible for the translation of plans of objectives to concrete activities, considering resource-boundedness. To do so, all the activity in the agent (including control) is explicitly scheduled, but allowing the necessary exibility to make changes in the face of contingencies that are expected in dynamic environments. Experimental work is also presented.
Resumo:
In this paper, we introduce B2DI model that extends BDI model to perform Bayesian inference under uncertainty. For scalability and flexibility purposes, Multiply Sectioned Bayesian Network (MSBN) technology has been selected and adapted to BDI agent reasoning. A belief update mechanism has been defined for agents, whose belief models are connected by public shared beliefs, and the certainty of these beliefs is updated based on MSBN. The classical BDI agent architecture has been extended in order to manage uncertainty using Bayesian reasoning. The resulting extended model, so-called B2DI, proposes a new control loop. The proposed B2DI model has been evaluated in a network fault diagnosis scenario. The evaluation has compared this model with two previously developed agent models. The evaluation has been carried out with a real testbed diagnosis scenario using JADEX. As a result, the proposed model exhibits significant improvements in the cost and time required to carry out a reliable diagnosis.