25 resultados para polypropylene in-reactor alloys


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmentally friendly molybdenum disulfide (INT-MoS2) inorganic nanotubes were introduced into an isotactic polypropylene (iPP) polymer matrix to generate novel nanocomposite materials through an advantageous melt-processing route. The effects of INT-MoS2 content on the thermal, mechanical and tribological properties were investigated. The incorporation of INT-MoS2 generates notable performance enhancements through reinforcement effects, highly efficient nucleation activity and excellent lubricating ability in comparison with other nanoparticle fillers such as nanoclays, carbon nanotubes, silicon nitrides and halloysite nanotubes. It was shown that these INT-MoS2 nanocomposites can provide an effective balance between performance, cost effectiveness and processability, and should be of some interest in the area of multifunctional polymer nanocomposite materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The failure locus, the characteristics of the stress–strain curve and the damage localization patterns were analyzed in a polypropylene nonwoven fabric under in-plane biaxial deformation. The analysis was carried out by means of a homogenization model developed within the context of the finite element method. It provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element and takes into account the main deformation and damage mechanisms experimentally observed. It was found that the failure locus in the stress space was accurately predicted by the Von Mises criterion and failure took place by the localization of damage into a crack perpendicular to the main loading axis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neutronics and activation of the preliminary reacion chamber of HiPER reactor based in a SCLL blanket

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fuel cycles are designed with the aim of obtaining the highest amount of energy possible. Since higher burnup values are reached, it is necessary to improve our disposal designs, traditionally based on the conservative assumption that they contain fresh fuel. The criticality calculations involved must consider burnup by making the most of the experimental and computational capabilities developed, respectively, to measure and predict the isotopic content of the spent nuclear fuel. These high burnup scenarios encourage a review of the computational tools to find out possible weaknesses in the nuclear data libraries, in the methodologies applied and their applicability range. Experimental measurements of the spent nuclear fuel provide the perfect framework to benchmark the most well-known and established codes, both in the industry and academic research activity. For the present paper, SCALE 6.0/TRITON and MONTEBURNS 2.0 have been chosen to follow the isotopic content of four samples irradiated in the Spanish Vandellós-II pressurized water reactor up to burnup values ranging from 40 GWd/MTU to 75 GWd/MTU. By comparison with the experimental data reported for these samples, we can probe the applicability of these codes to deal with high burnup problems. We have developed new computational tools within MONTENBURNS 2.0. They make possible to handle an irradiation history that includes geometrical and positional changes of the samples within the reactor core. This paper describes the irradiation scenario against which the mentioned codes and our capabilities are to be benchmarked.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The HiPER reactor design is exploring different reaction chambers. In this study, we tackle the neutronicsand activation studies of a preliminary reaction chamber based in the following technologies: unpro-tected dry wall for the First Wall, self-cooled lead lithium blanket, and independent low activation steelVacuum Vessel. The most critical free parameter in this stage is the blanket thickness, as a function ofthe6Li enrichment. After a parametric study, we select for study both a ?thin? and ?thick? blanket, with?high? and ?low?6Li enrichment respectively, to reach a TBR = 1.1. To help to make a choice, we com-pute, for both blanket options, in addition to the TBR, the energy amplification factor, the tritium partialpressure, the203Hg and210Po total activity in the LiPb loop, and the Vacuum Vessel thickness requiredto guarantee the reweldability during its lifetime. The thin blanket shows a superior performance in thesafety related issues and structural viability, but it operates at higher6Li enrichment. It is selected forfurther improvements. The Vacuum Vessel shows to be unviable in both cases, with the thickness varyingbetween 39 and 52 cm. Further chamber modifications, such as the introduction of a neutron reflector,are required to exploit the benefits of the thin blanket with a reasonable Vacuum Vessel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mechanical degradation of tungsten alloys at extreme temperatures in vacuum and oxidation atmospheres.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work addresses heat losses in a CVD reactor for polysilicon production. Contributions to the energy consumption of the so-called Siemens process are evaluated, and a comprehensive model for heat loss is presented. A previously-developed model for radiative heat loss is combined with conductive heat loss theory and a new model for convective heat loss. Theoretical calculations are developed and theoretical energy consumption of the polysilicon deposition process is obtained. The model is validated by comparison with experimental results obtained using a laboratory-scale CVD reactor. Finally, the model is used to calculate heat consumption in a 36-rod industrial reactor; the energy consumption due to convective heat loss per kilogram of polysilicon produced is calculated to be 22-30 kWh/kg along a deposition process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme´s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study shows a first approach to the simulation of the remote handling oper- ation which takes into account the thermal and flexible behavior of the blanket segments and its implications on the remote handling equipment, in order to validate and improve its design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the gasification of two biomass types (pine wood and olive stones) in a laboratory scale bubbling fluidized bed reactor, in order to evaluate comparatively their potential in the production of syngas.