20 resultados para paste
Resumo:
En los últimos años, las sociedades industrializadas han tomado una mayor conciencia sobre el problema que suponen las emisiones indiscriminadas de gases de efecto invernadero a la atmósfera. El hormigón, cuyo principal componente es el cemento, es probablemente el material más utilizado en construcción. En la actualidad, las emisiones globales de CO2 debidas a la combustión del CaCO3 del cemento Pórtland representan entre el 5% y el 10% respecto del total. Estos valores son de gran interés si se considera que el compromiso aceptado al firmar el Protocolo de Kioto es de una reducción del 5% antes del año 2020, sobre el total de gases producidos. El principal objetivo del presente trabajo es el estudio microestructural y de los procesos de hidratación de los cementos con adiciones. Para ello se propone contribuir a la investigación sobre nuevos productos cementicios basados en micropartículas esféricas vítreas que pueden adicionarse al cemento antes del proceso de amasado. Los resultados obtenidos se han contrastado con las adiciones convencionales de más uso en la actualidad. El nuevo material basa su composición en la química del aluminio y el silicio. Al disminuir la cantidad de CaCO3, se contribuye al desarrollo sostenible y a la reducción de emisiones de CO2. La patente creada por el Grupo Cementos Pórtland Valderrivas (GCPV), describe el proceso de producción de las cemesferas (WO 2009/007470, 2010). Los productos que forman la materia prima para la elaboración de las cemesferas son arcillas, calizas, margas o productos o subproductos industriales, que tras su molienda, son fundidos mediante un fluido gaseoso a elevada temperatura (entre 1250ºC y 1600ºC). Este proceso permite obtener un producto final en forma esférica maciza o microesfera, que tras estabilizarse mediante un enfriamiento rápido, consigue una alta vitrificación idónea para su reactividad química, con una mínima superficie específica en relación a su masa. El producto final obtenido presenta prácticamente la finura requerida y no precisa ser molido, lo que reduce las emisiones de CO2 por el ahorro de combustible durante el proceso de molienda. El proceso descrito permite obtener un amplio abanico de materiales cementantes que, no solo pueden dar respuesta a los problemas generados por las emisiones de CO2, sino también a la disponibilidad de materiales en países donde hasta el momento no se puede fabricar cemento debido a la falta de calizas. Complementariamente se ha optimizado el método de cálculo del grado de hidratación a partir de los resultados del ensayo de ATD-TG en base a los modelos de cálculo de Bhatty y Pane. El método propuesto permite interpretar el comportamiento futuro del material a partir de la interpolación numérica de la cantidad de agua químicamente enlazada. La evolución del grado de hidratación tiene una relación directa con el desarrollo de la resistencia mecánica del material. Con el fin de caracterizar los materiales de base cemento, se ha llevado a cabo una amplia campaña experimental en pasta de cemento, mortero y hormigón. La investigación abarca tres niveles: caracterización microestructural, macroestructural y caracterización del comportamiento a largo plazo, fundamentalmente durabilidad. En total se han evaluado ocho adiciones diferentes: cuatro adiciones convencionales y cuatro tipos de cemesferas con diferente composición química. Los ensayos a escala microscópica comprenden la caracterización química, granulométrica y de la superficie específica BET de los materiales anhidros, análisis térmico diferencial y termogravimétrico en pasta de cemento y mortero, resonancia magnética de silicio en pasta de cemento, difracción de rayos X de los materiales anhidros y de las probetas de pasta, microscopía electrónica de barrido con analizador de energía dispersiva por rayos X en pasta y mortero, y porosimetría por intrusión de mercurio en mortero. La caracterización macroscópica del material comprende ensayos de determinación del agua de consistencia normal y de los tiempos de inicio y fin de fraguado en pasta de cemento, ensayos de resistencia mecánica a flexión y compresión en probetas prismáticas de mortero, y ensayos de resistencia a compresión en probetas de hormigón. Para caracterizar la durabilidad se han desarrollado ensayos de determinación del coeficiente de migración de cloruros y ensayos de resistividad eléctrica en probetas de mortero. Todos los ensayos enumerados permiten clarificar el comportamiento de las cemesferas y compararlo con las distintas adiciones de uso convencional. Los resultados reflejan un buen comportamiento resistente y durable de los materiales con adición de cemesferas. La caracterización microscópica refleja su relación con las propiedades mesoscópicas y permite comprender mejor la evolución en los procesos de hidratación de las cemesferas. In recent years industrialised societies have become increasingly aware of the problem posed by indiscriminate emission of greenhouse gases into the atmosphere. Concrete, with a main component being cement, is arguably the most widely used construction material. At present, global emissions of CO2 due to the combustion of CaCO3 from Portland cement represent between 5% and 10% of the total. If the requirement of the Kyoto Protocol of a reduction of 5% of the total gas produced before 2020 is considered, then such values are of significant interest. The main objective of this work is the assessment of the microstructure and the hydration processes of cements with additions. Such an examination proposes research into new cementitious products based on vitreous spherical microparticles that may be added to the cement before the mixing process. The results are compared with the most commonly used conventional additions. The new material bases its composition on the chemistry of aluminium and silicates. By decreasing the amount of CaCO3, it is possible both to contribute to sustainable development and reduce CO2 emissions. The patent created by Grupo Cementos Portland Valderrivas (GCPV) describes the production process of microspheres (WO 2009/007470, 2010). The products that form the raw material for manufacture are clays, lime-stone, marl and industrial products or by-products that melt after being ground and fed into a gaseous fluid at high temperatures (1250°C and 1600°C). This process allows the obtaining of a product with a solid-spherical or micro-spherical shape and which, after being stabilised in a solid state by rapid cooling, obtains a high vitrification suitable for chemical reactivity, having a minimal surface in relation to its mass. Given that the final product has the fineness required, it prevents grinding that reduces CO2 emissions by saving fuel during this process. The process, which allows a wide range of cementitious materials to be obtained, not only addresses the problems caused by CO2 emissions but also enhances the availability of materials in countries that until the time of writing have not produced cement due to a lack of limestone. In addition, the calculation of the degree of hydration from the test results of DTA-TG is optimised and based on Bhatty and Pane calculation models. The proposed method allows prediction of the performance of the material from numerical interpolation of the amount of chemically bound water. The degree of hydration has a direct relationship with the development of material mechanical strength. In order to characterise the cement-based materials, an extensive experimental campaign in cement paste, concrete and mortar is conducted. The research comprises three levels: micro-structural characterisation, macro-structural and long-term behaviour (mainly durability). In total, eight additions are assessed: four conventional additions and four types of microspheres with different chemical compositions. The micro-scale tests include characterisation of chemical composition, particle size distribution and the BET specific surface area of anhydrous material, differential thermal and thermogravimetric analysis in cement paste and mortar, silicon-29 nuclear magnetic resonance in cement paste, X-ray diffraction of the anhydrous materials and paste specimens, scanning of electron microscopy with energy dispersive X-ray analyser in cement paste and mortar, and mercury intrusion porosimetry in mortar. The macroscopic material characterisation entails determination of water demand for normal consistency, and initial and final setting times of cement paste, flexural and compressive mechanical strength tests in prismatic mortar specimens, and compressive strength tests in concrete specimens. Tests for determining the chloride migration coefficient are performed to characterise durability, together with electrical resistivity tests in mortar specimens. All the tests listed allow clarification of the behaviour of the microspheres and comparison with the various additions of conventional use. The results show good resistance and durable behaviour of materials with a microsphere addition. Microscopic characterisation reflects their relationship with mesoscopic properties and provides insights into the hydration processes of the microspheres.
Resumo:
The main objective of this work is to adapt the Laser Induced Forward Techniques (LIFT), a well- known laser direct writing technique for material transfer, to define metallic contacts (fingers and busbars) onto c-Si cells. The silver paste (with viscosity around 30-50 kcPs) is applied over a glass substrate using a coater. The thickness of the paste can be control changing the deposit parameters. The glass with the silver paste is set at a controlled gap over the c-Si cell. A solid state pulsed laser (532 nm) is focused at the glass/silver interface producing a droplet of silver that it is transferred to the c-Si cell. A scanner is used to print lines. The process parameters (silver paste thickness, gap and laser parameters -spot size, pulse energy and overlapping of pulses) are modified and the morphology of the lines is studied using confocal microscopy. Long lines are printed and the uniformity (in thickness and height) is studied. Some examples of metallization of larger areas (up to 10 cm x 10 cm) are presented.
Resumo:
TiO2 nanoparticles (TiO2NPs) prepared by the sol–gel method have been incorporated to cement paste with the aim of creating a photocatalytic system capable of compensating, through degradation of hazardous molecules, the envi- ronmental impact associated to the production of the clinker. Doping was carried out at different mass ratios with TiO2NPs precursor solutions within a fresh ce- ment paste, which was then characterized using scanning electron microscopy (SEM). The photocatalytic performance was evaluated by the degradation of Methylene Blue (MB) using a 125W UV lamp as irradiating source. Main cement properties such as hydration degree and C-S-H content are affected by TiO2NPs doping level. Cement containing TiO2NPs exhibited an increasing photocatalytic activity for increasing doping, while the pure cement paste control could hardly degrade MB. The kinetics of the system where also studied and their second order behavior related to microstructural aspects of the system.
Resumo:
El deterioro del hormigón por ciclos de hielo-deshielo en presencia de sales fundentes es causa frecuente de problemas en los puentes e infraestructuras existentes en los países europeos. Los daños producidos por los ciclos de hielo-deshielo en el hormigón pueden ser internos, fundamentalmente la fisuración y/o externos como el descascarillamiento (desgaste superficial). La España peninsular presenta unas características geográficas y climáticas particulares. El 18% de la superficie tiene una altura superior a 1000mts y, además, la altura media geográfica con respecto al nivel del mar es de 660mts (siendo el segundo país más montañoso de toda Europa).Esto hace que la Red de Carreteras del Estado se vea afectada, durante determinados periodos, por fenómenos meteorológicos adversos, en particular por nevadas y heladas, que pueden comprometer las condiciones de vialidad para la circulación de vehículos. Por este motivo la Dirección General de Carreteras realiza trabajos anualmente (campañas de vialidad invernal, de 6 meses de duración) para el mantenimiento de la vialidad de las carreteras cuando éstas se ven afectadas por estos fenómenos. Existen protocolos y planes operativos que permiten sistematizar estos trabajos de mantenimiento que, además, se han intensificado en los últimos 10 años, y que se fundamentan en el empleo de sales fundentes, principalmente NaCl, con la misión de que no haya placas de hielo, ni nieve, en las carreteras. En zonas de fuerte oscilación térmica, que con frecuencia en España se localizan en la zona central del Pirineo, parte de la cornisa Cantábrica y Sistema Central, se producen importantes deterioros en las estructuras y paramentos de hormigón producidos por los ciclos de hielo- deshielo. Pero además el uso de fundentes de vialidad invernal acelera en gran medida la evolución de estos daños. Los tableros de hormigón de puentes de carretera de unos 40-50 años de antigüedad carecen, en general, de un sistema de impermeabilización, y están formados frecuentemente por un firme de mezcla asfáltica, una emulsión adherente y el hormigón de la losa. En la presente tesis se realiza una investigación que pretende reproducir en laboratorio los procesos que tienen lugar en el hormigón de tableros de puentes existentes de carreteras, de unos 40-50 años de antigüedad, que están expuestos durante largos periodos a sales fundentes, con objeto de facilitar la vialidad invernal, y a cambios drásticos de temperatura (hielo y deshielo). Por ello se realizaron cuatro campañas de investigación, teniendo en cuenta que, si bien nos basamos en la norma europea UNE-CEN/TS 12390-9 “Ensayos de hormigón endurecido. Resistencia al hielo-deshielo. Pérdida de masa”, se fabricaron probetas no estandarizadas para este ensayo, pensado en realidad para determinar la afección de los ciclos únicamente a la pérdida de masa. Las dimensiones de las probetas en nuestro caso fueron 150x300 mm, 75 x 150mm (cilíndricas normalizadas para roturas a compresión según la norma UNE-EN 12390-3) y 286x76x76 (prismáticas normalizadas para estudiar cambio de volumen según la norma ASTM C157), lo cual nos permitió realizar sobre las mismas probetas más ensayos, según se presentan en la tesis y, sobre todo, poder comparar los resultados con probetas extraídas de dimensiones similares en puentes existentes. En la primera campaña, por aplicación de la citada norma, se realizaron ciclos de H/D, con y sin contacto con sales de deshielo (NaCl en disolución del 3% según establece dicha norma). El hormigón fabricado en laboratorio, tratando de simular el de losas de tableros de puentes antiguos, presentó una fc de 22,6 MPa y relación agua/cemento de 0,65. Las probetas de hormigón fabricadas se sometieron a ciclos agresivos de hielo/deshielo (H/D), empleando una temperatura máxima de +20ºC y una temperatura mínima de -20ºC al objeto de poder determinar la sensibilidad de este ensayo tanto al tipo de hormigón elaborado como al tipo de probeta fabricado (cilíndrica y prismática). Esta campaña tuvo una segunda fase para profundizar más en el comportamiento de las probetas sometidas a ciclos H/D en presencia de sales. En la segunda campaña, realizada sobre probetas de hormigón fabricadas en laboratorio iguales a las anteriores, la temperaturas mínima del ensayo se subió a -14ºC, lo que nos permitió analizar el proceso de deterioro con más detalle. (Realizando una serie de ensayos de caracterización no destructivos y otros destructivos, y validando su aplicación a la detección de los deterioros causados tras los ensayos acelerados de hielodeshielo. También mediante aplicación de técnicas de microscopía electrónica.) La tercera campaña, se realizó sobre probetas de hormigón de laboratorio similares a las anteriores, fc de 29,3Mpa y relación a/c de 0,65, en las que se aplicó en una cara un revestimiento asfáltico de 2-4cms, según fueran prismáticas y cilíndricas respectivamente, compuesto por una mezcla asfáltica real (AC16), sobre una imprimación bituminosa. (Para simular el nivel de impermeabilización que produce un firme sobre el tablero de un puente) La cuarta campaña, se desarrolló tras una cuidadosa selección de dos puentes de hormigón de 40-50 años de antigüedad, expuestos y sensibles a deterioros de hielodeshielo, y en carreteras con aportación de fundentes. Una vez esto se extrajeron testigos de hormigón de zonas sanas (nervios del tablero), para realizar en laboratorio los mismos ensayos acelerados de hielo-deshielo y de caracterización, de la segunda campaña, basados en la misma norma. De los resultados obtenidos se concluye que cuando se emplean sales fundentes se acelera de forma significativa el deterioro, aumentando tanto el contenido de agua en los poros como el gradiente generado (mecanismo de deterioro físico). Las sales de deshielo aceleran claramente la aparición del daño, que se incrementa incluso en un factor de 5 según se constata en esta investigación para los hormigones ensayados. Pero además se produce un gradiente de cloruros que se ha detectado tanto en los hormigones diseñados en laboratorio como en los extraídos de puentes existentes. En casi todos los casos han aparecido cambios en la microestructura de la pasta de cemento (mecanismo de deterioro químico), confirmándose la formación de un compuesto en el gel CSH de la pasta de cemento, del tipo Ca2SiO3Cl2, que posiblemente está contribuyendo a la alteración de la pasta y a la aceleración de los daños en presencia de sales fundentes. Existe un periodo entre la aparición de fisuración y la pérdida de masa. Las fisuras progresan rápidamente desde la interfase de los áridos más pequeños y angulosos, facilitando así el deterioro del hormigón. Se puede deducir así que el tipo de árido afecta al deterioro. En el caso de los testigos con recubrimiento asfáltico, parece haberse demostrado que la precipitación de sales genera tensiones en las zonas de hormigón cercanas al recubrimiento, que terminan por fisurar el material. Y se constata que el mecanimo de deterioro químico, probablemente tenga más repercusión que el físico, por cuanto el recubrimiento asfáltico es capaz de retener suficiente agua, como para que el gradiente de contenido de agua en el hormigón sea mucho menor que sin el recubrimiento. Se constató, sin embargo, la importancia del gradiente de cloruros en el hormigon. Por lo que se deduce que si bien el recubrimiento asfáltico es ciertamente protector frente a los ciclos H/D, su protección disminuye en presencia de sales; es decir, los cloruros acabarán afectando al hormigón del tablero del puente. Finalmente, entre los hormigones recientes y los antiguos extraídos de puentes reales, se observa que existen diferencias significativas en cuanto a la resistencia a los ciclos H/D entre ellos. Los hormigones más recientes resultan, a igualdad de propiedades, más resistentes tanto a ciclos de H/D en agua como en sales. Posiblemente el hecho de que los hormigones de los puentes hayan estado expuestos a condiciones de temperaturas extremas durante largos periodos de tiempo les ha sensibilizado. La tesis realizada, junto con nuevos contrastes que se realicen en el futuro, nos permitirá implementar una metodología basada en la extracción de testigos de tableros de puente reales para someterlos a ensayos de hielo-deshielo, basados en la norma europea UNECEN/ TS 12390-9 aunque con probetas no normalizadas para el mismo, y, a su vez, realizar sobre estas probetas otros ensayos de caracterización destructivos, que posibilitarán evaluar los daños ocasionados por este fenómeno y su evolución temporal, para actuar consecuentemente priorizando intervenciones de impermeabilización y reparación en el parque de puentes de la RCE. Incluso será posible la elaboración de mapas de riesgo, en función de las zonas de climatología más desfavorable y de los tratamientos de vialidad invernal que se lleven a cabo. Concrete damage by freeze-thaw cycles in the presence of melting salts frequently causes problems on bridges and infrastructures in European countries. Damage caused by freeze-thaw cycles in the concrete can be internal, essentially cracking and / or external as flaking (surface weathering due to environmental action). The peninsular Spain presents specific climatic and geographical characteristics. 18% of the surface has a height greater than 1,000 m and the geographical average height from the sea level is 660 m (being the second most mountainous country in Europe). This makes the National Road Network affected during certain periods due to adverse weather, particularly snow and ice, which can compromise road conditions for vehicular traffic. For this reason the National Road Authority performs works annually (Winter Road Campaign, along 6 months) to maintain the viability of the roads when they are affected by these phenomena. There are protocols and operational plans that allow systematize these maintenance jobs, that also have intensified in the last 10 years, and which are based on the use of deicing salts, mainly NaCl, with the mission that no ice sheets, or snow appear on the roads. In areas of strong thermal cycling, which in Spain are located in the central area of the Pyrenees, part of the Cantabrian coast and Central System, significant deterioration take place in the structures and wall surfaces of concrete due to freeze-thaw. But also the use of deicing salts for winter maintenance greatly accelerated the development of such damages. The concrete decks for road bridges about 40-50 years old, lack generally a waterproofing system, and are often formed by a pavement of asphalt, an adhesive emulsion and concrete slab. In this thesis the research going on aims to reproduce in the laboratory the processes taking place in the concrete of an existing deck at road bridges, about 40-50 years old, they are exposed for long periods to icing salt, to be performed in order to facilitate winter maintenance, and drastic temperature changes (freezing and thawing). Therefore four campaigns of research were conducted, considering that while we rely on the European standard UNE-CEN/TS 12390-9 "Testing hardened concrete. Freezethaw resistance. Mass loss", nonstandard specimens were fabricated for this test, actually conceived to determine the affection of the cycles only to the mass loss. Dimensions of the samples were in our case 150x300 mm, 75 x 150mm (standard cylindrical specimens for compression fractures UNE-EN 12390-3) and 286x76x76 (standard prismatic specimens to study volume change ASTM C157), which allowed us to carry on same samples more trials, as presented in the thesis, and especially to compare the results with similar sized samples taken from real bridges. In the first campaign, by application of that European standard, freeze-thaw cycles, with and without contact with deicing salt (NaCl 3% solution in compliance with such standard) were performed. Concrete made in the laboratory, trying to simulate the old bridges, provided a compressive strength of 22.6 MPa and water/cement ratio of 0.65. In this activity, the concrete specimens produced were subjected to aggressive freeze/thaw using a maximum temperature of +20ºC and a minimum temperature of - 20°C in order to be able to determine the sensitivity of this test to the concrete and specimens fabricated. This campaign had a second phase to go deeper into the behavior of the specimens subjected to cycled freeze/thaw in the presence of salts. In the second campaign, conducted on similar concrete specimens manufactured in laboratory, temperatures of +20ºC and -14ºC were used in the tests, which allowed us to analyze the deterioration process in more detail (performing a series of non-destructive testing and other destructive characterization, validating its application to the detection of the damage caused after the accelerated freeze-thaw tests, and also by applying electron microscopy techniques). The third campaign was conducted on concrete specimens similar to the above manufactured in laboratory, both cylindrical and prismatic, which was applied on one side a 4 cm asphalt coating, consisting of a real asphalt mixture, on a bituminous primer (for simulate the level of waterproofing that produces a pavement on the bridge deck). The fourth campaign was developed after careful selection of two concrete bridges 40- 50 years old, exposed and sensitive to freeze-thaw damage, in roads with input of melting salts. Concrete cores were extracted from healthy areas, for the same accelerated laboratory freeze-thaw testing and characterization made for the second campaign, based on the same standard. From the results obtained it is concluded that when melting salts are employed deterioration accelerates significantly, thus increasing the water content in the pores, as the gradient. Besides, chloride gradient was detected both in the concrete designed in the laboratory and in the extracted in existing bridges. In all cases there have been changes in the microstructure of the cement paste, confirming the formation of a compound gel CSH of the cement paste, Ca2SiO3Cl2 type, which is possibly contributing to impair the cement paste and accelerating the damage in the presence of melting salts. The detailed study has demonstrated that the formation of new compounds can cause porosity at certain times of the cycles may decrease, paradoxically, as the new compound fills the pores, although this phenomenon does not stop the deterioration mechanism and impairments increase with the number of cycles. There is a period between the occurrence of cracking and mass loss. Cracks progress rapidly from the interface of the smallest and angular aggregate, thus facilitating the deterioration of concrete. It can be deduced so the aggregate type affects the deterioration. The presence of melting salts in the system clearly accelerates the onset of damage, which increases even by a factor of 5 as can be seen in this investigation for concrete tested. In the case of specimens with asphalt coating, it seems to have demonstrated that the precipitation of salts generate tensions in the areas close to the concrete coating that end up cracking the material. It follows that while the asphalt coating is certainly a protection against the freeze/thaw cycles, this protection decreases in the presence of salts; so the chlorides will finally affect the concrete bridge deck. Finally, among the recent concrete specimens and the old ones extracted from real bridges, it is observed that the mechanical strengths are very similar to each other, as well as the porosity values and the accumulation capacity after pore water saturation. However, there are significant differences in resistance to freeze/thaw cycles between them. More recent concrete are at equal properties more resistant both cycles freeze/thaw in water with or without salts. Possibly the fact that concrete bridges have been exposed to extreme temperatures for long periods of time has sensitized them. The study, along with new contrasts that occur in the future, allow us to implement a methodology based on the extraction of cores from the deck of real bridges for submission to freeze-thaw tests based on the European standard UNE-CEN/TS 12390-9 even with non-standard specimens for it, and in turn, performed on these samples other destructive characterization tests, which will enable to assess the damage caused by this phenomenon and its evolution, to act rightly prioritizing interventions improving the waterproofing and other repairs in the bridge stock of the National Road Network. It will even be possible to develop risk maps, depending on the worst weather areas and winter road treatments to be carried out.
Resumo:
This thesis presents the study carried out at an underground mine to understand the stress distribution in the paste fills and to calculate the stability of the paste walls in the primary and secondary stopes. The mine is operated using sublevel stopes and fan blasting. The primary and secondary stopes are 20m wide, 30m high and between 20 and 60m long. Three-dimensional numerical models designed with the FLAC 3D software programme are used to study the distribution of the vertical stresses in the paste walls exposed in the primary and secondary stopes, and their evolution as the mining advance increases. The numerical models have demonstrated that an arc-like effect is produced in the paste fills of the primary stopes, that is, those which have either lateral walls in mineral or rock. This effect relieves the vertical stresses and increases the stability of the exposed paste wall fill. From the study, it is deduced that in this type of stope, the fill stability can be calculated using the formula established by Mitchell, (Mitchell, Olsen, and Smith 1982, 14-28). Based on the results of the numerical models, in the 30m high secondary stopes, the arc effect starts to be evident only in paste walls with a width/height ratio lower than 0.7. 3-D calculations show that the use of Mitchell formula may be risky when estimating the fill stability in secondary stopes. Therefore, in these cases, the traditional two-dimensional method for calculating the stability of vertical slopes on cohesive saturated soils in the short term should be used. However this method may give conservative results for paste walls in secondary stopes with a width/height ratio below 0.5. RESUMEN Esta Tesis presenta el estudio realizado en la mina subterránea de Aguas Teñidas (Huelva, España) para comprender la distribución de tensiones en los rellenos de pasta y calcular la estabilidad de las paredes de pasta en las cámaras primarias y secundarias. El método de explotación utilizado en esta mina es el de cámaras con subniveles y voladura en abanico. Las cámaras primarias y secundarias tienen una anchura de 20 m, una altura de 30 m y una longitud variable entre 20 y 60 m. Mediante modelos numéricos tridimensionales realizados con el programa FLAC 3D se ha estudiado la distribución de las tensiones verticales en las paredes de pasta que quedan expuestas en las cámaras primarias y secundarias, y su evolución a medida que aumenta la superficie explotada. La modelización numérica ha puesto de manifiesto que se produce efecto arco en los rellenos de pasta de las cámaras primarias, o sea, aquellas que tienen ambos hastiales en mineral o en roca. Este efecto aligera las tensiones verticales y aumenta la estabilidad del relleno de la pared de pasta expuesta. De acuerdo con los resultados de los modelos numéricos, en las cámaras secundarias de 30 m de alto, el efecto arco empieza a manifestarse solamente en las paredes de pasta de relación anchura/altura menor de 0,7. Los cálculos realizados en tres dimensiones indican que la fórmula de Mitchell (Mitchell, Olsen, y Smith 1982, 14-28) puede resultar arriesgada para estimar la estabilidad del relleno en este tipo de cámaras. Por consiguiente, se recomienda utilizar en estos casos el método que tradicionalmente se ha empleado para calcular la estabilidad de taludes verticales en suelos cohesivos a corto plazo, en dos dimensiones. Aunque este método puede resultar conservador para paredes de pasta de cámaras secundarias con una relación anchura/altura inferior a 0,5. Para usar relleno de pasta para el sostenimiento en minería subterránea hay que tener en cuenta el cálculo de los parámetros de diseño, optimización de la mezcla, cualidades de bombeo y la operación de transporte al interior de la mina. Los gastos de ésta operación minera son importantes ya que pueden representar hasta de 20%.