22 resultados para open-water evaporation radiation-based models
Resumo:
The mechanical behavior of granular materials has been traditionally approached through two theoretical and computational frameworks: macromechanics and micromechanics. Macromechanics focuses on continuum based models. In consequence it is assumed that the matter in the granular material is homogeneous and continuously distributed over its volume so that the smallest element cut from the body possesses the same physical properties as the body. In particular, it has some equivalent mechanical properties, represented by complex and non-linear constitutive relationships. Engineering problems are usually solved using computational methods such as FEM or FDM. On the other hand, micromechanics is the analysis of heterogeneous materials on the level of their individual constituents. In granular materials, if the properties of particles are known, a micromechanical approach can lead to a predictive response of the whole heterogeneous material. Two classes of numerical techniques can be differentiated: computational micromechanics, which consists on applying continuum mechanics on each of the phases of a representative volume element and then solving numerically the equations, and atomistic methods (DEM), which consist on applying rigid body dynamics together with interaction potentials to the particles. Statistical mechanics approaches arise between micro and macromechanics. It tries to state which the expected macroscopic properties of a granular system are, by starting from a micromechanical analysis of the features of the particles and the interactions. The main objective of this paper is to introduce this approach.
Resumo:
La fotosíntesis es el proceso biológico que permite la producción primaria y, por tanto, la vida en nuestro planeta. La tasa fotosintética viene determinada por la ‘maquinaria’ bioquímica y las resistencias difusivas al paso del CO2 desde la atmósfera hasta su fijación en el interior de los cloroplastos. Históricamente la mayor resistencia difusiva se ha atribuido al cierre estomático, sin embargo ahora sabemos, debido a las mejoras en las técnicas experimentales, que existe también una resistencia grande que se opone a la difusión del CO2 desde los espacios intercelulares a los lugares de carboxilación. Esta resistencia, llamada normalmente por su inversa: la conductancia del mesófilo (gm), puede ser igual o incluso superior a la resistencia debida por el cierre estomático. En la presente tesis doctoral he caracterizado la limitación que ejerce la resistencia del mesófilo a la fijación de CO2 en diversas especies forestales y en distintos momentos de su ciclo biológico. En la fase de regenerado, hemos estudiado tres situaciones ambientales relevantes en el mayor éxito de su supervivencia, que son: el déficit hídrico, su interacción con la irradiancia y el paso del crecimiento en la sombra a mayor irradiancia, como puede suceder tras la apertura de un hueco en el dosel forestal. En la fase de arbolado adulto se ha caracterizado el estado hídrico y el intercambio gaseoso en hojas desarrolladas a distinta irradiancia dentro del dosel vegetal durante tres años contrastados en pluviometría. Para cada tipo de estudio se han empleado las técnicas ecofisiológicas más pertinentes para evaluar el estado hídrico y el intercambio gaseoso. Por su complejidad y la falta de un método que permita su cuantificación directa, la gm ha sido evaluada por los métodos más usados, que son: la discriminación isotópica del carbono 13, el método de la J variable, el método de la J constante y el método de la curvatura. Los resultados más significativos permiten concluir que la limitación relativa a la fotosíntesis por la conductancia estomática, del mesófilo y bioquímica es dependiente de la localización de la hoja en el dosel forestal. Por primera vez se ha documentado que bajo estrés hídrico las hojas desarrolladas a la sombra estuvieron más limitadas por una reducción en la gm, mientras que las hojas desarrolladas a pleno sol estuvieron más limitadas por reducción mayor de la conductancia estomática (gsw). Encontramos buena conexión entre el aparato fotosintético foliar y el sistema hídrico debido al alto grado de correlación entre la conductancia hidráulica foliar aparente y la concentración de CO2 en los cloroplastos en distintas especies forestales. Además, hemos mostrado diferentes pautas de regulación del intercambio gaseoso según las particularidades ecológicas de las especies estudiadas. Tanto en brinzales crecidos de forma natural y en el arbolado adulto como en plántulas cultivadas en el invernadero la ontogenia afectó a las limitaciones de la fotosíntesis producidas por estrés hídrico, resultando que las limitaciones estomáticas fueron dominantes en hojas más jóvenes mientras que las no estomáticas en hojas más maduras. La puesta en luz supuso un gran descenso en la gm durante los días siguientes a la transferencia, siendo este efecto mayor según el grado de sombreo previo en el que se han desarrollado las hojas. La aclimatación de las hojas a la alta irradiancia estuvo ligada a las modificaciones anatómicas foliares y al estado de desarrollo de la hoja. El ratio entre la gm/gsw determinó la mayor eficiencia en el uso del agua y un menor estado oxidativo durante la fase de estrés hídrico y su posterior rehidratación, lo cual sugiere el uso de este ratio en los programas de mejora genética frente al estrés hídrico. Debido a que la mayoría de modelos de estimación de la producción primaria bruta (GPP) de un ecosistema no incluye la gm, los mismos están incurriendo en una sobreestimación del GPP particularmente bajo condiciones de estrés hídrico, porque más de la mitad de la reducción en fotosíntesis en hojas desarrolladas a la sombra se debe a la reducción en gm. Finalmente se presenta un análisis de la importancia en las estimas de la gm bajo estrés hídrico de la refijación del CO2 emitido en la mitocondria a consecuencia de la fotorrespiración y la respiración mitocondrial en luz. ABSTRACT Photosynthesis is the biological process that supports primary production and, therefore, life on our planet. Rates of photosynthesis are determined by biochemical “machinery” and the diffusive resistance to the transfer of CO2 from the atmosphere to the place of fixation within the chloroplasts. Historically the largest diffusive resistance was attributed to the stomata, although we now know via improvements in experimental techniques that there is also a large resistance from sub-stomatal cavities to sites of carboxylation. This resistance, commonly quantified as mesophyll conductance (gm), can be as large or even larger than that due to stomatal resistance. In the present PhD I have characterized the limitation exerted by the mesophyll resistance to CO2 fixation in different forest species at different stages of their life cycle. In seedlings, we studied three environmental conditions that affect plant fitness, namely, water deficit, the interaction of water deficit with irradiance, and the transfer of plants grown in the shade to higher irradiance as can occur when a gap opens in the forest canopy. At the stage of mature trees we characterized water status and gas exchange in leaves developed at different irradiance within the canopy over the course of three years that had contrasting rainfall. For each study we used the most relevant ecophysiological techniques to quantify water relations and gas exchange. Due to its complexity and the lack of a method that allows direct quantification, gm was estimated by the most commonly used methods which are: carbon isotope discrimination, the J-variable, constant J and the curvature method The most significant results suggest that the relative limitation of photosynthesis by stomata, mesophyll and biochemistry depending on the position of the leaf within the canopy. For the first time it was documented that under water stress shaded leaves were more limited by a reduction in gm, while the sun-adapted leaves were more limited by stomatal conductance (gsw). The connection between leaf photosynthetic apparatus and the hydraulic system was shown by the good correlations found between the apparent leaf hydraulic conductance and the CO2 concentration in the chloroplasts in shade- and sun-adapted leaves of several tree species. In addition, we have revealed different patterns of gas exchange regulation according to the functional ecology of the species studied. In field grown trees and greenhouse-grown seedlings ontogeny affected limitations of photosynthesis due to water stress with stomatal limitations dominating in young leaves and nonstomatal limitations in older leaves. The transfer to high light resulted in major decrease of gm during the days following the transfer and this effect was greater as higher was the shade which leaves were developed. Acclimation to high light was linked to the leaf anatomical changes and the state of leaf development. The ratio between the gm/gsw determined the greater efficiency in water use and reduced the oxidative stress during the water stress and subsequent rehydration, suggesting the use of this ratio in breeding programs aiming to increase avoidance of water stress. Because most models to estimate gross primary production (GPP) of an ecosystem do not include gm, they are incurring an overestimation of GPP particularly under conditions of water stress because more than half of An decrease in shade-developed leaves may be due to reduction in gm. Finally, we present an analysis of the importance of how estimates of gm under water stress are affected by the refixation of CO2 that is emitted from mitochondria via photorespiration and mitochondrial respiration in light.
Resumo:
One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark.
Resumo:
To date, only few initiatives have been carried out in Spain in order to use mathematical models (e.g. DNDC, DayCent, FASSET y SIMSNIC) to estimate nitrogen (N) and carbon (C) dynamics as well as greenhouse gases (GHG) in Spanish agrosystems. Modeling at this level may allow to gain insight on both the complex relationships between biological and physicochemical processes, controlling the processes leading to GHG production and consumption in soils (e.g. nitrification, denitrification, decomposing, etc.), and the interactions between C and N cycles within the different components of the continuum plant-soil-environment. Additionally, these models can simulate the processes behind production, consumition and transport of GHG (e.g. nitrous oxide, N2O, and carbon dioxide, CO2) in the short and medium term and at different scales. Other sources of potential pollution from soils can be identified and quantified using these process-based models (e.g. NO3 y NH3).
Resumo:
La disponibilidad hídrica es uno de los principales factores que determinan el rendimiento del viñedo en muchas regiones vitícolas, por lo que sus consecuencias han sido ampliamente estudiadas. Sin embargo, para una cantidad de agua de riego determinada, otros aspectos como la frecuencia de aplicación, o la combinación entre el caudal de los goteros y la distancia entre los mismos (es decir, el patrón de distribución de agua en el suelo), pueden jugar un papel relevante, pero estos factores han sido poco estudiados. El objetivo de este trabajo ha sido evaluar las implicaciones agronómicas y fisiológicas de dos frecuencias de riego (IrrF, cada 2 y 4 días) y dos patrones de distribución de agua (DisP, goteros de 2 L h-1 separados 0,6 m vs. goteros de 4 L h-1 separados 1,2 m). El experimento se llevó a cabo durante cuatro temporadas consecutivas en un viñedo cv. Syrah con un suelo arcilloso en el centro de España, y los dos factores fueron evaluados bajo dos condiciones de disponibilidad hídrica (Baja: 20% de ETo y Media: 40% de ETo). El efecto de la frecuencia de riego y el patrón de distribución de agua en la respuesta agronómica del cv. Syrah se ha estudiado en el capítulo 1. La frecuencia de riego y el patrón de distribución de agua en el suelo afectaron a algunos aspectos de los componentes de rendimiento y desarrollo vegetativo en las dos condiciones de disponibilidad hídrica, aunque los efectos observados no fueron los mismos todos los años. Los efectos fueron más evidentes para IrrF en condiciones de baja disponibilidad hídrica y para DisP en condiciones de disponibilidad hídrica media. Dos de los cuatro años del experimento, el pasar de frecuencia de riego de 2 días a 4 días causó un incremento medio de rendimiento del 20% para la situación de baja disponibilidad hídrica. La textura del suelo, sin duda ha condicionado los resultados obtenidos en los tratamientos regados con el 20% de la ETo, ya que regar cada dos días implicaba la aplicación de pequeñas cantidades de agua y se formaban bulbos de riego superficiales, probablemente favoreciendo las pérdidas por evaporación. En el capítulo 2, se ha analizado el efecto de la frecuencia de riego y del patrón de distribución de agua en el estado hídrico de la planta y el intercambio gaseoso a nivel de hoja con el fin de explicar las diferencias observadas en la respuesta agronómica. En lo que respecta a la frecuencia de riego, en condiciones de baja disponibilidad hídrica, las plantas regadas cada 4 días (plantas 4d), mostraron mayores tasas de asimilación neta y conductancia estomática que las plantas regadas cada 2 días (plantas 2d), lo que es consistente con la hipótesis de que con la frecuencia de riego de 2 días se produjo una pérdida de eficiencia del uso del agua, probablemente debido a una mayor evaporación como consecuencia del hecho de que el volumen de suelo mojado creado era pequeño y cerca de la superficie. En condiciones de disponibilidad hídrica media, las diferencias en el intercambio gaseoso a nivel de hoja fueron mucho más pequeñas. Al comienzo del verano cada frecuencia de riego se comportó mejor uno de los días de medida, compensando al final del ciclo de riego de 4 días. Sin embargo, a medida que avanzó el verano y el déficit de agua se hizo más alto, las diferencias significativas aparecieron sólo en el 'día 4' del ciclo de riego, cuando las plantas 2d se comportaron mejor que las plantas regadas 4d que llevaban tres días sin regarse. Estas diferencias fisiológicas fueron menores que en condiciones de baja disponibilidad hídrica y al parecer no suficientes para afectar el comportamiento agronómico. En cuanto al patrón de distribución de agua, el efecto fue poco significativo, pero la mayor densidad de goteros tendió a presentar un mayor intercambio gaseoso a nivel de hoja, especialmente a media mañana. El efecto fue más importante para las condiciones de disponibilidad hídrica media. En el capítulo 3, se han comparado las relaciones entre el intercambio gaseoso a nivel de hoja, el estado hídrico y la demanda atmosférica, con el fin de explicar los cambios en la intensidad de la respuesta fisiológica observados en el Capítulo 2. No se han encontrado diferencias en dichas relaciones para el patrón de distribución de agua, por lo que sólo se ha analizado el efecto de la frecuencia de riego. El estudio se ha centrado fundamentalmente en si las plantas mostraron una respuesta fisiológica diferente a los cambios en el estado hídrico y en la demanda atmosférica según el tiempo transcurrido desde el último riego. Las diferencias observadas explican los resultados obtenidos en los capítulos anteriores, y sugieren la existencia de procesos de aclimatación vinculados a la frecuencia de riego y a la disponibilidad hídrica. Las plantas bajo condiciones de baja disponibilidad hídrica se mostraron más aclimatadas al estrés hídrico que aquellas en condiciones de disponibilidad hídrica media. La frecuencia de riego afectó claramente la relación entre los parámetros de intercambio gaseoso a nivel de hoja, el estado hídrico de la planta y las condiciones atmosféricas, y junto con la cantidad de agua aplicada tuvo implicaciones en el desarrollo de mecanismos de aclimatación que afectaron a la respuesta fisiológica de la planta, afectando a la eficiencia del riego. ABSTRACT Water availability is one of the major factors that determine vineyard performance in many grape growing regions, so its implications have been widely studied before. However, for a given irrigation water amount, other aspects such as application frequency, or emitter spacing and flow rate (i.e., distribution pattern), may play a relevant role, but these factors have been scarcely studied. The aim of this work was to evaluate the agronomic and physiological implications of two irrigation frequencies (IrrF, every 2 and 4 days) and two water distribution patterns (DisP, 2 L h−1 emitters every 0.6 m vs. 4 L h−1 emitters every 1.2 m). The experiment was carried out during four consecutive seasons in a cv. Syrah vineyard with a clay soil in central Spain, and the two factors were evaluated under two water availability conditions (LOW WA: 20% of ETo and MEDIUM WA: 40% of ETo). The effect of irrigation frequency and water distribution pattern on the agronomical response of cv. Syrah was studied in Chapter 1. IrrF and DisP affected some aspects of vegetative development and yield components under both water availability conditions, although the effects observed were not the same every year. The effects were more evident for IrrF under low water availability and for DisP under medium water availability. Two out of the four years of the experiment, the change of irrigation frequency from 2 days to 4 days promoted an average yield increase of 20% for the LOW WA situation. Soil texture certainly conditioned the results obtained under LOW WA conditions, since high frequency irrigation implied applying small amounts of water that resulted in limited superficial water bulbs, which probably favored water evaporation. In Chapter 2, the effect of irrigation frequency and water distribution pattern on plant water status and leaf gas exchange was analyzed to explain the differences observed in the agronomical response. Concerning irrigation frequency, under LOW WA conditions, applying irrigation every 4 days, resulted in higher net assimilation rates and stomatal conductance than doing it every 2 days, supporting the hypothesis that the latter frequency resulted in a water use efficiency loss, probably due to higher evaporation as a consequence of the fact the wetted soil volume created was small and close to the surface. Under MEDIUM WA conditions, differences in leaf gas exchange were much smaller. At the beginning of the summer each irrigation frequency behaved better one of the measurements days, compensating at the end of the 4-day irrigation cycle. However, as the summer progressed and water deficit became higher, significant differences appeared only on ‘day 4’ of the irrigation cycle, when 2d plants behaved better than 4d plants. These physiological differences were smaller than under LOW WA conditions and apparently not sufficient to affect agronomical performance. Regarding water distribution pattern, the effect was less significant but the closest emitter spacing resulted in general terms in a higher leaf gas exchange, especially at midmorning. The effect was more noticeable for MEDIUM WA conditions. In Chapter 3, the relationships between leaf gas exchange and leaf water status and atmospheric demand were compared to explain the changes in the intensity of the physiological response observed in Chapter 2. No differences were found in the relationships for water distribution pattern, so only the effect of irrigation frequency was analyzed focusing on whether the plants have a different physiological response to changes in water status and atmospheric demand according to the time elapsed since the last irrigation. Differences observed in the relationships explained the results obtained in the previous chapters, and point at the occurrence of acclimation processes linked to irrigation frequency and to water availability. Plants under LOW WATER AVAILABILITY conditions seemed to be more acclimated to water stress than those under MEDIUM WATER AVAILABILITY conditions. Irrigation frequency clearly affected the relationship between leaf gas exchange parameters, plant water status and atmospheric conditions, and together with the amount of water applied had implications in the development of acclimation mechanisms that affected plant physiological response, thus affecting irrigation efficiency.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
El triatlón es un deporte combinado en el que sin solución de continuidad se hace un tramo de nado, en aguas abiertas, seguido por uno de ciclismo, para terminar en carrera a pie. Las distancias son muy variadas, aunque la que nos importa en esta tesis es la de-nominada olímpica: 1.500 metros nadando, 40 km en bicicleta y 10 km en carrera a pie. Es un deporte joven, nació a finales de los 80 y es olímpico solo desde los JJ. OO. de Sídney 2000. Sin embargo, esta juventud le ha hecho crecer con fuerza y con muchas ganas de conocerse por dentro a sí mismo. La elección de este deporte se debe, entre otros factores, a la afinidad personal como entrenador del equipo nacional en dos JJ. OO. Por otro lado, al ser un deporte que se desarrolla al aire libre hace que sus par-ticipantes estén expuestos a los cambios climáticos, por lo que la adaptación a los mismos es un factor que juega a favor de la mejora del rendimiento. Cuando la temperatura del agua donde se nada es baja se permite la utilización de un traje especial de neopreno que aísla de dicha temperatura. Ambos elementos, neopreno y clima, están directamente relacionados con el resultado final de la prueba. El objetivo de la presente investigación es demostrar cómo la utilización del neo-preno influye en el resultado final de la misma y cómo las condiciones de calor también tienen una clara influencia en el resultado de la competición de élite femenino en triatlón olímpico de élite internacional. Realizado el análisis de los resultados de la competición de máximo nivel internacional entre 2005 y 2014 (382) participantes y 2.500 participaciones, claramente, los resultados obtenidos determinan que el uso del neopreno hace que la natación sea más rápida y que el calor influye negativamente en el ritmo de carrera a pie. ABSTRACT Triathlon is a combined sport consisting on open water swimming, cycling and running, one after the other with no stops. Distance of the segments can vary, however this thesis will be focus in the called olympic distance: 1.500 meters swimming, 40 km cycling and 10 km running. It´s a relatively new sport, born in the final 80´s, and olympic since Sydney Olympic Games in 2000. Nevertheless, it´s growing fast and there´s a high inte¬rest in knowing all the aspects of it. The choice of triathlon is due, between other reasons, to the special personal affi¬nity with the sport, coming from being the principal trainer of the Spanish Na¬tional Team in two different Olympic Games (Sydney 2000 and Athens 2004). As an outdoor sport, participants are exposed to weather changes and their adaptation to them plays a role in the final performance. When the water tem-perature in the swimming section is bellow certain degrees (20º C in the case of the olympic distance), a special isolation wetsuit is allowed for swimming. Both elements, weather and wetsuit, are related with the final results. Main goal of this paper is to show the influence of the use of wetsuits in the final results, and how hot weather clearly impacts the result of the female elite races in olympic triathlon. Results from highest performance competitions between 2005 and 2014 has been analysed. 382 participants and 2.500 participations. Results show clearly that the use of a wetsuit makes swimming faster and high temperature makes running slower.