23 resultados para on-disk data layout
Resumo:
A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.
Resumo:
In this paper we describe the specification of amodel for the semantically interoperable representation of language resources for sentiment analysis. The model integrates "lemon", an RDF-based model for the specification of ontology-lexica (Buitelaar et al. 2009), which is used increasinglyfor the representation of language resources asLinked Data, with Marl, an RDF-based model for the representation of sentiment annotations (West-erski et al., 2011; Sánchez-Rada et al., 2013)
Resumo:
Simulation of satellite subsystems behaviour is extramely important in the design at early stages. The subsystems are normally simulated in the both ways : isolated and as part of more complex simulation that takes into account imputs from other subsystems (concurrent design). In the present work, a simple concurrent simulation of the power subsystem of a microsatellite, UPMSat-2, is described. The aim of the work is to obtain the performance profile of the system (battery charging level, power consumption by the payloads, power supply from solar panels....). Different situations such as battery critical low or high level, effects of high current charging due to the low temperature of solar panels after eclipse,DoD margins..., were analysed, and different safety strategies studied using the developed tool (simulator) to fulfil the mission requirements. Also, failure cases were analysed in order to study the robustness of the system. The mentioned simulator has been programed taking into account the power consumption performances (average and maximum consumptions per orbit/day) of small part of the subsystem (SELEX GALILEO SPVS modular generators built with Azur Space solar cells, SAFT VES16 6P4S Li-ion battery, SSBV magnetometers, TECNOBIT and DATSI/UPM On Board Data Handling -OBDH-...). The developed tool is then intended to be a modular simulator, with the chance of use any other components implementing some standard data.
Resumo:
This paper presents a Focused Crawler in order to Get Semantic Web Resources (CSR). Structured data web are available in formats such as Extensible Markup Language (XML), Resource Description Framework (RDF) and Ontology Web Language (OWL) that can be used for processing. One of the main challenges for performing a manual search and download semantic web resources is that this task consumes a lot of time. Our research work propose a focused crawler which allow to download these resources automatically and store them on disk in order to have a collection that will be used for data processing. CRS consists of three layers: (a) The User Interface Layer, (b) The Focus Crawler Layer and (c) The Base Crawler Layer. CSR uses as a selection policie the Shark-Search method. CSR was conducted with two experiments. The first one starts on December 15 2012 at 7:11 am and ends on December 16 2012 at 4:01 were obtained 448,123,537 bytes of data. The CSR ends by itself after to analyze 80,4375 seeds with an unlimited depth. CSR got 16,576 semantic resources files where the 89 % was RDF, the 10 % was XML and the 1% was OWL. The second one was based on the Web Data Commons work of the Research Group Data and Web Science at the University of Mannheim and the Institute AIFB at the Karlsruhe Institute of Technology. This began at 4:46 am of June 2 2013 and 1:37 am June 9 2013. After 162.51 hours of execution the result was 285,279 semantic resources where predominated the XML resources with 99 % and OWL and RDF with 1 % each one.
Resumo:
In this paper we present a dataset componsed of domain-specific sentiment lexicons in six languages for two domains. We used existing collections of reviews from Trip Advisor, Amazon, the Stanford Network Analysis Project and the OpinRank Review Dataset. We use an RDF model based on the lemon and Marl formats to represent the lexicons. We describe the methodology that we applied to generate the domain-specific lexicons and we provide access information to our datasets.
Resumo:
Clinicians could model the brain injury of a patient through his brain activity. However, how this model is defined and how it changes when the patient is recovering are questions yet unanswered. In this paper, the use of MedVir framework is proposed with the aim of answering these questions. Based on complex data mining techniques, this provides not only the differentiation between TBI patients and control subjects (with a 72% of accuracy using 0.632 Bootstrap validation), but also the ability to detect whether a patient may recover or not, and all of that in a quick and easy way through a visualization technique which allows interaction.
Resumo:
Ontology-Based Data Access (OBDA) permite el acceso a diferentes tipos de fuentes de datos (tradicionalmente bases de datos) usando un modelo más abstracto proporcionado por una ontología. La reescritura de consultas (query rewriting) usa una ontología para reescribir una consulta en una consulta reescrita que puede ser evaluada en la fuente de datos. Las consultas reescritas recuperan las respuestas que están implicadas por la combinación de los datos explicitamente almacenados en la fuente de datos, la consulta original y la ontología. Al trabajar sólo sobre las queries, la reescritura de consultas permite OBDA sobre cualquier fuente de datos que puede ser consultada, independientemente de las posibilidades para modificarla. Sin embargo, producir y evaluar las consultas reescritas son procesos costosos que suelen volverse más complejos conforme la expresividad y tamaño de la ontología y las consultas aumentan. En esta tesis exploramos distintas optimizaciones que peuden ser realizadas tanto en el proceso de reescritura como en las consultas reescritas para mejorar la aplicabilidad de OBDA en contextos realistas. Nuestra contribución técnica principal es un sistema de reescritura de consultas que implementa las optimizaciones presentadas en esta tesis. Estas optimizaciones son las contribuciones principales de la tesis y se pueden agrupar en tres grupos diferentes: -optimizaciones que se pueden aplicar al considerar los predicados en la ontología que no están realmente mapeados con las fuentes de datos. -optimizaciones en ingeniería que se pueden aplicar al manejar el proceso de reescritura de consultas en una forma que permite reducir la carga computacional del proceso de generación de consultas reescritas. -optimizaciones que se pueden aplicar al considerar metainformación adicional acerca de las características de la ABox. En esta tesis proporcionamos demostraciones formales acerca de la corrección y completitud de las optimizaciones propuestas, y una evaluación empírica acerca del impacto de estas optimizaciones. Como contribución adicional, parte de este enfoque empírico, proponemos un banco de pruebas (benchmark) para la evaluación de los sistemas de reescritura de consultas. Adicionalmente, proporcionamos algunas directrices para la creación y expansión de esta clase de bancos de pruebas. ABSTRACT Ontology-Based Data Access (OBDA) allows accessing different kinds of data sources (traditionally databases) using a more abstract model provided by an ontology. Query rewriting uses such ontology to rewrite a query into a rewritten query that can be evaluated on the data source. The rewritten queries retrieve the answers that are entailed by the combination of the data explicitly stored in the data source, the original query and the ontology. However, producing and evaluating the rewritten queries are both costly processes that become generally more complex as the expressiveness and size of the ontology and queries increase. In this thesis we explore several optimisations that can be performed both in the rewriting process and in the rewritten queries to improve the applicability of OBDA in real contexts. Our main technical contribution is a query rewriting system that implements the optimisations presented in this thesis. These optimisations are the core contributions of the thesis and can be grouped into three different groups: -optimisations that can be applied when considering the predicates in the ontology that are actually mapped to the data sources. -engineering optimisations that can be applied by handling the process of query rewriting in a way that permits to reduce the computational load of the query generation process. -optimisations that can be applied when considering additional metainformation about the characteristics of the ABox. In this thesis we provide formal proofs for the correctness of the proposed optimisations, and an empirical evaluation about the impact of the optimisations. As an additional contribution, part of this empirical approach, we propose a benchmark for the evaluation of query rewriting systems. We also provide some guidelines for the creation and expansion of this kind of benchmarks.
Resumo:
Over the last few years, the Data Center market has increased exponentially and this tendency continues today. As a direct consequence of this trend, the industry is pushing the development and implementation of different new technologies that would improve the energy consumption efficiency of data centers. An adaptive dashboard would allow the user to monitor the most important parameters of a data center in real time. For that reason, monitoring companies work with IoT big data filtering tools and cloud computing systems to handle the amounts of data obtained from the sensors placed in a data center.Analyzing the market trends in this field we can affirm that the study of predictive algorithms has become an essential area for competitive IT companies. Complex algorithms are used to forecast risk situations based on historical data and warn the user in case of danger. Considering that several different users will interact with this dashboard from IT experts or maintenance staff to accounting managers, it is vital to personalize it automatically. Following that line of though, the dashboard should only show relevant metrics to the user in different formats like overlapped maps or representative graphs among others. These maps will show all the information needed in a visual and easy-to-evaluate way. To sum up, this dashboard will allow the user to visualize and control a wide range of variables. Monitoring essential factors such as average temperature, gradients or hotspots as well as energy and power consumption and savings by rack or building would allow the client to understand how his equipment is behaving, helping him to optimize the energy consumption and efficiency of the racks. It also would help him to prevent possible damages in the equipment with predictive high-tech algorithms.