22 resultados para numerical modelling
Resumo:
A nonlinear implicit finite element model for the solution of two-dimensional (2-D) shallow water equations, based on a Galerkin formulation of the 2-D estuaries hydrodynamic equations, has been developed. Spatial discretization has been achieved by the use of isoparametric, Lagrangian elements. To obtain the different element matrices, Simpson numerical integration has been applied. For time integration of the model, several schemes in finite differences have been used: the Cranck-Nicholson iterative method supplies a superior accuracy and allows us to work with the greatest time step Δt; however, central differences time integration produces a greater velocity of calculation. The model has been tested with different examples to check its accuracy and advantages in relation to computation and handling of matrices. Finally, an application to the Bay of Santander is also presented.
Resumo:
El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.
Resumo:
This paper proposes an extension of methods used to predict the propagation of landslides having a long runout to smaller landslides with much shorter propagation distances. The method is based on: (1) a depth-integrated mathematical model including the coupling between the soil skeleton and the pore fluids, (2) suitable rheological models describing the relation between the stress and the rate of deformation tensors for fluidised soils and (3) a meshless numerical method, Smooth Particle Hydrodynamics, which separates the computational mesh (or set of computational nodes) from the mesh describing the terrain topography, which is of structured type – thus accelerating search operations. The proposed model is validated using two examples for which there are analytical solutions, and then it is applied to two short runout landslides which happened in Hong Kong in 1995, for which there is available information.
Resumo:
Debris avalanches are complex phenomena due to the variety of mechanisms that control the failure stage and the avalanche formation. Regarding these issues, in the literature, either field evidence or qualitative interpretations can be found while few experimental laboratory tests and rare examples of geomechanical modelling are available for technical and/or scientific purposes. As a contribution to the topic, the paper firstly highlights as the problem can be analysed referring to a unique mathematical framework from which different modelling approaches can be derived based on limit equilibrium method (LEM), finite element method (FEM), or smooth particle hydrodynamics (SPH). Potentialities and limitations of these approaches are then tested for a large study area where huge debris avalanches affected shallow deposits of pyroclastic soils (Sarno-Quindici, Southern Italy). The numerical results show that LEM as well as uncoupled and coupled stress–strain FEM analyses are able to individuate the major triggering mechanisms. On the other hand, coupled SPH analyses outline the relevance of erosion phenomena, which can modify the kinematic features of debris avalanches in their source areas, i.e. velocity, propagation patterns and later spreading of the unstable mass. As a whole, the obtained results encourage the application of the introduced approaches to further analyse real cases in order to enhance the current capability to forecast the inception of these dangerous phenomena.
Resumo:
La región del espectro electromagnético comprendida entre 100 GHz y 10 THz alberga una gran variedad de aplicaciones en campos tan dispares como la radioastronomía, espectroscopíamolecular, medicina, seguridad, radar, etc. Los principales inconvenientes en el desarrollo de estas aplicaciones son los altos costes de producción de los sistemas trabajando a estas frecuencias, su costoso mantenimiento, gran volumen y baja fiabilidad. Entre las diferentes tecnologías a frecuencias de THz, la tecnología de los diodos Schottky juega un importante papel debido a su madurez y a la sencillez de estos dispositivos. Además, los diodos Schottky pueden operar tanto a temperatura ambiente como a temperaturas criogénicas, con altas eficiencias cuando se usan como multiplicadores y con moderadas temperaturas de ruido en mezcladores. El principal objetivo de esta tesis doctoral es analizar los fenómenos físicos responsables de las características eléctricas y del ruido en los diodos Schottky, así como analizar y diseñar circuitos multiplicadores y mezcladores en bandas milimétricas y submilimétricas. La primera parte de la tesis presenta un análisis de los fenómenos físicos que limitan el comportamiento de los diodos Schottky de GaAs y GaN y de las características del espectro de ruido de estos dispositivos. Para llevar a cabo este análisis, un modelo del diodo basado en la técnica de Monte Carlo se ha considerado como referencia debido a la elevada precisión y fiabilidad de este modelo. Además, el modelo de Monte Carlo permite calcular directamente el espectro de ruido de los diodos sin necesidad de utilizar ningún modelo analítico o empírico. Se han analizado fenómenos físicos como saturación de la velocidad, inercia de los portadores, dependencia de la movilidad electrónica con la longitud de la epicapa, resonancias del plasma y efectos no locales y no estacionarios. También se ha presentado un completo análisis del espectro de ruido para diodos Schottky de GaAs y GaN operando tanto en condiciones estáticas como variables con el tiempo. Los resultados obtenidos en esta parte de la tesis contribuyen a mejorar la comprensión de la respuesta eléctrica y del ruido de los diodos Schottky en condiciones de altas frecuencias y/o altos campos eléctricos. También, estos resultados han ayudado a determinar las limitaciones de modelos numéricos y analíticos usados en el análisis de la respuesta eléctrica y del ruido electrónico en los diodos Schottky. La segunda parte de la tesis está dedicada al análisis de multiplicadores y mezcladores mediante una herramienta de simulación de circuitos basada en la técnica de balance armónico. Diferentes modelos basados en circuitos equivalentes del dispositivo, en las ecuaciones de arrastre-difusión y en la técnica de Monte Carlo se han considerado en este análisis. El modelo de Monte Carlo acoplado a la técnica de balance armónico se ha usado como referencia para evaluar las limitaciones y el rango de validez de modelos basados en circuitos equivalentes y en las ecuaciones de arrastredifusión para el diseño de circuitos multiplicadores y mezcladores. Una notable característica de esta herramienta de simulación es que permite diseñar circuitos Schottky teniendo en cuenta tanto la respuesta eléctrica como el ruido generado en los dispositivos. Los resultados de las simulaciones presentados en esta parte de la tesis, tanto paramultiplicadores comomezcladores, se han comparado con resultados experimentales publicados en la literatura. El simulador que integra el modelo de Monte Carlo con la técnica de balance armónico permite analizar y diseñar circuitos a frecuencias superiores a 1 THz. ABSTRACT The terahertz region of the electromagnetic spectrum(100 GHz-10 THz) presents a wide range of applications such as radio-astronomy, molecular spectroscopy, medicine, security and radar, among others. The main obstacles for the development of these applications are the high production cost of the systems working at these frequencies, highmaintenance, high volume and low reliability. Among the different THz technologies, Schottky technology plays an important rule due to its maturity and the inherent simplicity of these devices. Besides, Schottky diodes can operate at both room and cryogenic temperatures, with high efficiency in multipliers and moderate noise temperature in mixers. This PhD. thesis is mainly concerned with the analysis of the physical processes responsible for the characteristics of the electrical response and noise of Schottky diodes, as well as the analysis and design of frequency multipliers and mixers at millimeter and submillimeter wavelengths. The first part of the thesis deals with the analysis of the physical phenomena limiting the electrical performance of GaAs and GaN Schottky diodes and their noise performance. To carry out this analysis, a Monte Carlo model of the diode has been used as a reference due to the high accuracy and reliability of this diode model at millimeter and submillimter wavelengths. Besides, the Monte Carlo model provides a direct description of the noise spectra of the devices without the necessity of any additional analytical or empirical model. Physical phenomena like velocity saturation, carrier inertia, dependence of the electron mobility on the epilayer length, plasma resonance and nonlocal effects in time and space have been analysed. Also, a complete analysis of the current noise spectra of GaAs and GaN Schottky diodes operating under static and time varying conditions is presented in this part of the thesis. The obtained results provide a better understanding of the electrical and the noise responses of Schottky diodes under high frequency and/or high electric field conditions. Also these results have helped to determine the limitations of numerical and analytical models used in the analysis of the electrical and the noise responses of these devices. The second part of the thesis is devoted to the analysis of frequency multipliers and mixers by means of an in-house circuit simulation tool based on the harmonic balance technique. Different lumped equivalent circuits, drift-diffusion and Monte Carlo models have been considered in this analysis. The Monte Carlo model coupled to the harmonic balance technique has been used as a reference to evaluate the limitations and range of validity of lumped equivalent circuit and driftdiffusion models for the design of frequency multipliers and mixers. A remarkable feature of this reference simulation tool is that it enables the design of Schottky circuits from both electrical and noise considerations. The simulation results presented in this part of the thesis for both multipliers and mixers have been compared with measured results available in the literature. In addition, the Monte Carlo simulation tool allows the analysis and design of circuits above 1 THz.
Resumo:
The basic equations for modelling two-dimensional hydrodynamics and transport in estuaries and coastal regions have been developed. By using the finite element method, it is possible to transform the model into a discretized counterpart. The model has been applied in order to study the dispersion of an effluent within the Bay of Santander. The results obtained by means of a computer program are discussed.
Resumo:
This paper presents an overview of depth averaged modelling of fast catastrophic landslides where coupling of solid skeleton and pore fluid (air and water) is important. The first goal is to show how Biot-Zienkiewicz models can be applied to develop depth integrated, coupled models. The second objective of the paper is to consider a link which can be established between rheological and constitutive models. Perzyna´s viscoplasticity can be considered a general framework within which rheological models such as Bingham and cohesive frictional fluids can be derived. Among the several alternative numerical models, we will focus here on SPH which has not been widely applied by engineers to model landslide propagation. We propose an improvement, based on combining Finite Difference meshes associated to SPH nodes to describe pore pressure evolution inside the landslide mass. We devote a Section to analyze the performance of the models, considering three sets of tests and examples which allows to assess the model performance and limitations: (i) Problems having an analytical solution, (ii) Small scale laboratory tests, and (iii) Real cases for which we have had access to reliable information