18 resultados para mixed integer linear programming
Resumo:
Nowadays, there is an uprising social pressure on big companies to incorporate into their decision-making process elements of the so-called social responsibility. Among the many implications of this fact, one relevant one is the need to include this new element in classic portfolio selection models. This paper meets this challenge by formulating a model that combines goal programming with "goal games" against nature in a scenario where the social responsibility is defined through the introduction of a battery of sustainability indicators amalgamated into a synthetic index. In this way, we have obtained an efficient model that only implies solving a small number of linear programming problems. The proposed approach has been tested and illustrated by using a case study related to the selection of securities in international markets.
Resumo:
La tesis está focalizada en la resolución de problemas de optimización combinatoria, haciendo uso de las opciones tecnológicas actuales que ofrecen las tecnologías de la información y las comunicaciones, y la investigación operativa. Los problemas de optimización combinatoria se resuelven en general mediante programación lineal y metaheurísticas. La aplicación de las técnicas de resolución de los problemas de optimización combinatoria requiere de una elevada carga computacional, y los algoritmos deben diseñarse, por un lado pensando en la efectividad para encontrar buenas soluciones del problema, y por otro lado, pensando en un uso adecuado de los recursos informáticos disponibles. La programación lineal y las metaheurísticas son técnicas de resolución genéricas, que se pueden aplicar a diferentes problemas, partiendo de una base común que se particulariza para cada problema concreto. En el campo del desarrollo de software, los frameworks cumplen esa función de comenzar un proyecto con el trabajo general ya disponible, con la opción de cambiar o extender ese comportamiento base o genérico, para construir el sistema concreto, lo que permite reducir el tiempo de desarrollo, y amplía las posibilidades de éxito del proyecto. En esta tesis se han desarrollado dos frameworks de desarrollo. El framework ILP permite modelar y resolver problemas de programación lineal, de forma independiente al software de resolución de programación lineal que se utilice. El framework LME permite resolver problemas de optimización combinatoria mediante metaheurísticas. Tradicionalmente, las aplicaciones de resolución de problemas de optimización combinatoria son aplicaciones de escritorio que permiten gestionar toda la información de entrada del problema y resuelven el problema en local, con los recursos hardware disponibles. Recientemente ha aparecido un nuevo paradigma de despliegue y uso de aplicaciones que permite compartir recursos informáticos especializados por Internet. Esta nueva forma de uso de recursos informáticos es la computación en la nube, que presenta el modelo de software como servicio (SaaS). En esta tesis se ha construido una plataforma SaaS, para la resolución de problemas de optimización combinatoria, que se despliega sobre arquitecturas compuestas por procesadores multi-núcleo y tarjetas gráficas, y dispone de algoritmos de resolución basados en frameworks de programación lineal y metaheurísticas. Toda la infraestructura es independiente del problema de optimización combinatoria a resolver, y se han desarrollado tres problemas que están totalmente integrados en la plataforma SaaS. Estos problemas se han seleccionado por su importancia práctica. Uno de los problemas tratados en la tesis, es el problema de rutas de vehículos (VRP), que consiste en calcular las rutas de menor coste de una flota de vehículos, que reparte mercancías a todos los clientes. Se ha partido de la versión más clásica del problema y se han hecho estudios en dos direcciones. Por un lado se ha cuantificado el aumento en la velocidad de ejecución de la resolución del problema en tarjetas gráficas. Por otro lado, se ha estudiado el impacto en la velocidad de ejecución y en la calidad de soluciones, en la resolución por la metaheurística de colonias de hormigas (ACO), cuando se introduce la programación lineal para optimizar las rutas individuales de cada vehículo. Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. Otro de los problemas tratados en la tesis, es el problema de asignación de flotas (FAP), que consiste en crear las rutas de menor coste para la flota de vehículos de una empresa de transporte de viajeros. Se ha definido un nuevo modelo de problema, que engloba características de problemas presentados en la literatura, y añade nuevas características, lo que permite modelar los requerimientos de las empresas de transporte de viajeros actuales. Este nuevo modelo resuelve de forma integrada el problema de definir los horarios de los trayectos, el problema de asignación del tipo de vehículo, y el problema de crear las rotaciones de los vehículos. Se ha creado un modelo de programación lineal para el problema, y se ha resuelto por programación lineal y por colonias de hormigas (ACO). Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. El último problema tratado en la tesis es el problema de planificación táctica de personal (TWFP), que consiste en definir la configuración de una plantilla de trabajadores de menor coste, para cubrir una demanda de carga de trabajo variable. Se ha definido un modelo de problema muy flexible en la definición de contratos, que permite el uso del modelo en diversos sectores productivos. Se ha definido un modelo matemático de programación lineal para representar el problema. Se han definido una serie de casos de uso, que muestran la versatilidad del modelo de problema, y permiten simular el proceso de toma de decisiones de la configuración de una plantilla de trabajadores, cuantificando económicamente cada decisión que se toma. Este problema se ha desarrollado con el framework ILP, y está disponible en la plataforma SaaS. ABSTRACT The thesis is focused on solving combinatorial optimization problems, using current technology options offered by information technology and communications, and operations research. Combinatorial optimization problems are solved in general by linear programming and metaheuristics. The application of these techniques for solving combinatorial optimization problems requires a high computational load, and algorithms are designed, on the one hand thinking to find good solutions to the problem, and on the other hand, thinking about proper use of the available computing resources. Linear programming and metaheuristic are generic resolution techniques, which can be applied to different problems, beginning with a common base that is particularized for each specific problem. In the field of software development, frameworks fulfill this function that allows you to start a project with the overall work already available, with the option to change or extend the behavior or generic basis, to build the concrete system, thus reducing the time development, and expanding the possibilities of success of the project. In this thesis, two development frameworks have been designed and developed. The ILP framework allows to modeling and solving linear programming problems, regardless of the linear programming solver used. The LME framework is designed for solving combinatorial optimization problems using metaheuristics. Traditionally, applications for solving combinatorial optimization problems are desktop applications that allow the user to manage all the information input of the problem and solve the problem locally, using the available hardware resources. Recently, a new deployment paradigm has appeared, that lets to share hardware and software resources by the Internet. This new use of computer resources is cloud computing, which presents the model of software as a service (SaaS). In this thesis, a SaaS platform has been built for solving combinatorial optimization problems, which is deployed on architectures, composed of multi-core processors and graphics cards, and has algorithms based on metaheuristics and linear programming frameworks. The SaaS infrastructure is independent of the combinatorial optimization problem to solve, and three problems are fully integrated into the SaaS platform. These problems have been selected for their practical importance. One of the problems discussed in the thesis, is the vehicle routing problem (VRP), which goal is to calculate the least cost of a fleet of vehicles, which distributes goods to all customers. The VRP has been studied in two directions. On one hand, it has been quantified the increase in execution speed when the problem is solved on graphics cards. On the other hand, it has been studied the impact on execution speed and quality of solutions, when the problem is solved by ant colony optimization (ACO) metaheuristic, and linear programming is introduced to optimize the individual routes of each vehicle. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. Another problem addressed in the thesis, is the fleet assignment problem (FAP), which goal is to create lower cost routes for a fleet of a passenger transport company. It has been defined a new model of problem, which includes features of problems presented in the literature, and adds new features, allowing modeling the business requirements of today's transport companies. This new integrated model solves the problem of defining the flights timetable, the problem of assigning the type of vehicle, and the problem of creating aircraft rotations. The problem has been solved by linear programming and ACO. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. The last problem discussed in the thesis is the tactical planning staff problem (TWFP), which is to define the staff of lower cost, to cover a given work load. It has been defined a very rich problem model in the definition of contracts, allowing the use of the model in various productive sectors. It has been defined a linear programming mathematical model to represent the problem. Some use cases has been defined, to show the versatility of the model problem, and to simulate the decision making process of setting up a staff, economically quantifying every decision that is made. This problem has been developed with the ILP framework, and is available in the SaaS platform.
Resumo:
En este estudio, englobado dentro del campo de la investigación operacional en aeropuertos, se considera el problema de la optimización de la secuencia de descontaminación de nieve de los tramos que componen el área de maniobras de un aeropuerto, denominado RM-AM. Este problema se enfrenta a la optimización de recursos limitados para retirar la nieve de las calles de rodadura y pistas, dejándolas en un estado aceptable para la operación de aeronaves. El campo de vuelos se divide en subconjuntos de tramos significativos para la operación y se establecen tiempos objetivo de apertura al tráfico de aeronaves. Se desarrollan varios algoritmos matemáticos en los que se proponen distintas funciones objetivo, como son la hora de finalización del proceso, la suma de las horas de finalización de cada tramo, o el retraso entre la hora estimada y la hora de finalización. Durante este proceso, se van introduciendo restricciones operativas relativas al cumplimiento de objetivos operativos parciales aplicados a las zonas de especial interés, o relativas a la operación de los equipos de descontaminación. El problema se resuelve mediante optimización basada en programación lineal. Los resultados de las pruebas computacionales se hacen sobre cinco modelos de área de maniobras en los que va creciendo la complejidad y el tamaño. Se comparan las prestaciones de los distintos algoritmos. Una vez definido el modelo matemático para la optiamización, se propone una metodología estructurada para abordar dicho problema para cualquier área de manobras. Se define una estrategia en la operación. Se acomete el área de maniobras por zonas, con la condición de que los subconjuntos de tramos significativos queden englobados dentro de una sola de estas zonas. El problema se resuelve mediante un proceso iterativo de optimización aplicado sucesivamente a las zonas que componen el área de maniobras durante cada iteración. Se analiza la repercusión de los resultados en los procesos DMAN, AMAN y TP, para la integración de los resultados en el cálculo de TSAT y EBIT. El método se particulariza para el caso del área de maniobras del Aeropuerto Adolfo Suárez Madrid Barajas. ABSTRACT This study, which lies within the field of operations research in airports, considers the optimisation of the sequence for clearing snow from stretches of the manoeuvring area of an airport, known as RM-AM. This issue involves the optimisation of limited resources to remove snow from taxiways and runways thereby leaving them in an acceptable condition for operating aircraft. The airfield is divided into subsets of significant stretches for the purpose of operations and target times are established during which these are open to aircraft traffic. The study contains several mathematical models each with different functions, such as the end time of the process, the sum of the end times of each stretch, and gap between the estimated and the real end times. During this process, we introduce different operating restrictions on partial fulfilment of the operational targets as applied to zones of special interest, or relating to the operation of the snow-clearing machines. The problem is solved by optimisation based on linear programming. Computational tests are carried out on five distinct models of the manoeuvring area, which cover increasingly complex situations and larger areas. The different algorithms are then compared to one other. Having defined the mathematical model for the optimisation, we then set out a structured methodology to deal with any type of manoeuvring area. In other words, we define an operational strategy. The airfield is divided into subsets of significant stretches for the purpose of operations and target times are set at which these are to be open to aircraft traffic. The manoeuvring area is also divided into zones, with the condition that the subsets of significant stretches lie within just one of these zones. The problem is solved by an iterative optimisation process based on linear programming applied successively to the zones that make up the manoeuvring area during each iteration. The impact of the results on DMAN, AMAN and TP processes is analysed for their integration into the calculation of TSAT and EBIT. The method is particularized for the case of the manoeuvring area of Adolfo Suarez Madrid - Barajas Airport.