35 resultados para linear functional state bounding


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution reviews the current state of art comprising the application of Complex Networks Theory to the analysis of functional brain networks. We briefly overview the main advances in this field during the last decade and we explain how graph analysis has increased our knowledge about how the brain behaves when performing a specific task or how it fails when a certain pathology arises. We also show the limitations of this kind of analysis, which have been a source of confusion and misunderstanding when interpreting the results obtained. Finally, we discuss about a possible direction to follow in the next years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis está incluida dentro del campo del campo de Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB), el cual ha adquirido una gran importancia en las comunicaciones inalámbricas de alta tasa de datos en la última década. UWB surgió con el objetivo de satisfacer la creciente demanda de conexiones inalámbricas en interiores y de uso doméstico, con bajo coste y alta velocidad. La disponibilidad de un ancho de banda grande, el potencial para alta velocidad de transmisión, baja complejidad y bajo consumo de energía, unido al bajo coste de implementación, representa una oportunidad única para que UWB se convierta en una solución ampliamente utilizada en aplicaciones de Wireless Personal Area Network (WPAN). UWB está definido como cualquier transmisión que ocupa un ancho de banda de más de 20% de su frecuencia central, o más de 500 MHz. En 2002, la Comisión Federal de Comunicaciones (FCC) definió que el rango de frecuencias de transmisión de UWB legal es de 3.1 a 10.6 GHz, con una energía de transmisión de -41.3 dBm/Hz. Bajo las directrices de FCC, el uso de la tecnología UWB puede aportar una enorme capacidad en las comunicaciones de corto alcance. Considerando las ecuaciones de capacidad de Shannon, incrementar la capacidad del canal requiere un incremento lineal en el ancho de banda, mientras que un aumento similar de la capacidad de canal requiere un aumento exponencial en la energía de transmisión. En los últimos años, s diferentes desarrollos del UWB han sido extensamente estudiados en diferentes áreas, entre los cuales, el protocolo de comunicaciones inalámbricas MB-OFDM UWB está considerado como la mejor elección y ha sido adoptado como estándar ISO/IEC para los WPANs. Combinando la modulación OFDM y la transmisión de datos utilizando las técnicas de salto de frecuencia, el sistema MB-OFDM UWB es capaz de soportar tasas de datos con que pueden variar de los 55 a los 480 Mbps, alcanzando una distancia máxima de hasta 10 metros. Se esperara que la tecnología MB-OFDM tenga un consumo energético muy bajo copando un are muy reducida en silicio, proporcionando soluciones de bajo coste que satisfagan las demandas del mercado. Para cumplir con todas estas expectativas, el desarrollo y la investigación del MBOFDM UWB deben enfrentarse a varios retos, como son la sincronización de alta sensibilidad, las restricciones de baja complejidad, las estrictas limitaciones energéticas, la escalabilidad y la flexibilidad. Tales retos requieren un procesamiento digital de la señal de última generación, capaz de desarrollar sistemas que puedan aprovechar por completo las ventajas del espectro UWB y proporcionar futuras aplicaciones inalámbricas en interiores. Esta tesis se centra en la completa optimización de un sistema de transceptor de banda base MB-OFDM UWB digital, cuyo objetivo es investigar y diseñar un subsistema de comunicación inalámbrica para la aplicación de las Redes de Sensores Inalámbricas Visuales. La complejidad inherente de los procesadores FFT/IFFT y el sistema de sincronización así como la alta frecuencia de operación para todos los elementos de procesamiento, se convierten en el cuello de la botella para el diseño y la implementación del sistema de UWB digital en base de banda basado en MB-OFDM de baja energía. El objetivo del transceptor propuesto es conseguir baja energía y baja complejidad bajo la premisa de un alto rendimiento. Las optimizaciones están realizadas tanto a nivel algorítmico como a nivel arquitectural para todos los elementos del sistema. Una arquitectura hardware eficiente en consumo se propone en primer lugar para aquellos módulos correspondientes a núcleos de computación. Para el procesado de la Transformada Rápida de Fourier (FFT/IFFT), se propone un algoritmo mixed-radix, basado en una arquitectura con pipeline y se ha desarrollado un módulo de Decodificador de Viterbi (VD) equilibrado en coste-velocidad con el objetivo de reducir el consumo energético e incrementar la velocidad de procesamiento. También se ha implementado un correlador signo-bit simple basado en la sincronización del tiempo de símbolo es presentado. Este correlador es usado para detectar y sincronizar los paquetes de OFDM de forma robusta y precisa. Para el desarrollo de los subsitemas de procesamiento y realizar la integración del sistema completo se han empleado tecnologías de última generación. El dispositivo utilizado para el sistema propuesto es una FPGA Virtex 5 XC5VLX110T del fabricante Xilinx. La validación el propuesta para el sistema transceptor se ha implementado en dicha placa de FPGA. En este trabajo se presenta un algoritmo, y una arquitectura, diseñado con filosofía de co-diseño hardware/software para el desarrollo de sistemas de FPGA complejos. El objetivo principal de la estrategia propuesta es de encontrar una metodología eficiente para el diseño de un sistema de FPGA configurable optimizado con el empleo del mínimo esfuerzo posible en el sistema de procedimiento de verificación, por tanto acelerar el periodo de desarrollo del sistema. La metodología de co-diseño presentada tiene la ventaja de ser fácil de usar, contiene todos los pasos desde la propuesta del algoritmo hasta la verificación del hardware, y puede ser ampliamente extendida para casi todos los tipos de desarrollos de FPGAs. En este trabajo se ha desarrollado sólo el sistema de transceptor digital de banda base por lo que la comprobación de señales transmitidas a través del canal inalámbrico en los entornos reales de comunicación sigue requiriendo componentes RF y un front-end analógico. No obstante, utilizando la metodología de co-simulación hardware/software citada anteriormente, es posible comunicar el sistema de transmisor y el receptor digital utilizando los modelos de canales propuestos por IEEE 802.15.3a, implementados en MATLAB. Por tanto, simplemente ajustando las características de cada modelo de canal, por ejemplo, un incremento del retraso y de la frecuencia central, podemos estimar el comportamiento del sistema propuesto en diferentes escenarios y entornos. Las mayores contribuciones de esta tesis son: • Se ha propuesto un nuevo algoritmo 128-puntos base mixto FFT usando la arquitectura pipeline multi-ruta. Los complejos multiplicadores para cada etapa de procesamiento son diseñados usando la arquitectura modificada shiftadd. Los sistemas word length y twiddle word length son comparados y seleccionados basándose en la señal para cuantización del SQNR y el análisis de energías. • El desempeño del procesador IFFT es analizado bajo diferentes situaciones aritméticas de bloques de punto flotante (BFP) para el control de desbordamiento, por tanto, para encontrar la arquitectura perfecta del algoritmo IFFT basado en el procesador FFT propuesto. • Para el sistema de receptor MB-OFDM UWB se ha empleado una sincronización del tiempo innovadora, de baja complejidad y esquema de compensación, que consiste en funciones de Detector de Paquetes (PD) y Estimación del Offset del tiempo. Simplificando el cross-correlation y maximizar las funciones probables solo a sign-bit, la complejidad computacional se ve reducida significativamente. • Se ha propuesto un sistema de decodificadores Viterbi de 64 estados de decisión-débil usando velocidad base-4 de arquitectura suma-comparaselecciona. El algoritmo Two-pointer Even también es introducido en la unidad de rastreador de origen con el objetivo de conseguir la eficiencia en el hardware. • Se han integrado varias tecnologías de última generación en el completo sistema transceptor basebanda , con el objetivo de implementar un sistema de comunicación UWB altamente optimizado. • Un diseño de flujo mejorado es propuesto para el complejo sistema de implementación, el cual puede ser usado para diseños de Cadena de puertas de campo programable general (FPGA). El diseño mencionado no sólo reduce dramáticamente el tiempo para la verificación funcional, sino también provee un análisis automático como los errores del retraso del output para el sistema de hardware implementado. • Un ambiente de comunicación virtual es establecido para la validación del propuesto sistema de transceptores MB-OFDM. Este método es provisto para facilitar el uso y la conveniencia de analizar el sistema digital de basebanda sin parte frontera analógica bajo diferentes ambientes de comunicación. Esta tesis doctoral está organizada en seis capítulos. En el primer capítulo se encuentra una breve introducción al campo del UWB, tanto relacionado con el proyecto como la motivación del desarrollo del sistema de MB-OFDM. En el capítulo 2, se presenta la información general y los requisitos del protocolo de comunicación inalámbrica MBOFDM UWB. En el capítulo 3 se habla de la arquitectura del sistema de transceptor digital MB-OFDM de banda base . El diseño del algoritmo propuesto y la arquitectura para cada elemento del procesamiento está detallado en este capítulo. Los retos de diseño del sistema que involucra un compromiso de discusión entre la complejidad de diseño, el consumo de energía, el coste de hardware, el desempeño del sistema, y otros aspectos. En el capítulo 4, se ha descrito la co-diseñada metodología de hardware/software. Cada parte del flujo del diseño será detallado con algunos ejemplos que se ha hecho durante el desarrollo del sistema. Aprovechando esta estrategia de diseño, el procedimiento de comunicación virtual es llevado a cabo para probar y analizar la arquitectura del transceptor propuesto. Los resultados experimentales de la co-simulación y el informe sintético de la implementación del sistema FPGA son reflejados en el capítulo 5. Finalmente, en el capítulo 6 se incluye las conclusiones y los futuros proyectos, y también los resultados derivados de este proyecto de doctorado. ABSTRACT In recent years, the Wireless Visual Sensor Network (WVSN) has drawn great interest in wireless communication research area. They enable a wealth of new applications such as building security control, image sensing, and target localization. However, nowadays wireless communication protocols (ZigBee, Wi-Fi, and Bluetooth for example) cannot fully satisfy the demands of high data rate, low power consumption, short range, and high robustness requirements. New communication protocol is highly desired for such kind of applications. The Ultra Wideband (UWB) wireless communication protocol, which has increased in importance for high data rate wireless communication field, are emerging as an important topic for WVSN research. UWB has emerged as a technology that offers great promise to satisfy the growing demand for low-cost, high-speed digital wireless indoor and home networks. The large bandwidth available, the potential for high data rate transmission, and the potential for low complexity and low power consumption, along with low implementation cost, all present a unique opportunity for UWB to become a widely adopted radio solution for future Wireless Personal Area Network (WPAN) applications. UWB is defined as any transmission that occupies a bandwidth of more than 20% of its center frequency, or more than 500 MHz. In 2002, the Federal Communications Commission (FCC) has mandated that UWB radio transmission can legally operate in the range from 3.1 to 10.6 GHz at a transmitter power of -41.3 dBm/Hz. Under the FCC guidelines, the use of UWB technology can provide enormous capacity over short communication ranges. Considering Shannon’s capacity equations, increasing the channel capacity requires linear increasing in bandwidth, whereas similar channel capacity increases would require exponential increases in transmission power. In recent years, several different UWB developments has been widely studied in different area, among which, the MB-OFDM UWB wireless communication protocol is considered to be the leading choice and has recently been adopted in the ISO/IEC standard for WPANs. By combing the OFDM modulation and data transmission using frequency hopping techniques, the MB-OFDM UWB system is able to support various data rates, ranging from 55 to 480 Mbps, over distances up to 10 meters. The MB-OFDM technology is expected to consume very little power and silicon area, as well as provide low-cost solutions that can satisfy consumer market demands. To fulfill these expectations, MB-OFDM UWB research and development have to cope with several challenges, which consist of high-sensitivity synchronization, low- complexity constraints, strict power limitations, scalability, and flexibility. Such challenges require state-of-the-art digital signal processing expertise to develop systems that could fully take advantages of the UWB spectrum and support future indoor wireless applications. This thesis focuses on fully optimization for the MB-OFDM UWB digital baseband transceiver system, aiming at researching and designing a wireless communication subsystem for the Wireless Visual Sensor Networks (WVSNs) application. The inherent high complexity of the FFT/IFFT processor and synchronization system, and high operation frequency for all processing elements, becomes the bottleneck for low power MB-OFDM based UWB digital baseband system hardware design and implementation. The proposed transceiver system targets low power and low complexity under the premise of high performance. Optimizations are made at both algorithm and architecture level for each element of the transceiver system. The low-power hardwareefficient structures are firstly proposed for those core computation modules, i.e., the mixed-radix algorithm based pipelined architecture is proposed for the Fast Fourier Transform (FFT/IFFT) processor, and the cost-speed balanced Viterbi Decoder (VD) module is developed, in the aim of lowering the power consumption and increasing the processing speed. In addition, a low complexity sign-bit correlation based symbol timing synchronization scheme is presented so as to detect and synchronize the OFDM packets robustly and accurately. Moreover, several state-of-the-art technologies are used for developing other processing subsystems and an entire MB-OFDM digital baseband transceiver system is integrated. The target device for the proposed transceiver system is Xilinx Virtex 5 XC5VLX110T FPGA board. In order to validate the proposed transceiver system in the FPGA board, a unified algorithm-architecture-circuit hardware/software co-design environment for complex FPGA system development is presented in this work. The main objective of the proposed strategy is to find an efficient methodology for designing a configurable optimized FPGA system by using as few efforts as possible in system verification procedure, so as to speed up the system development period. The presented co-design methodology has the advantages of easy to use, covering all steps from algorithm proposal to hardware verification, and widely spread for almost all kinds of FPGA developments. Because only the digital baseband transceiver system is developed in this thesis, the validation of transmitting signals through wireless channel in real communication environments still requires the analog front-end and RF components. However, by using the aforementioned hardware/software co-simulation methodology, the transmitter and receiver digital baseband systems get the opportunity to communicate with each other through the channel models, which are proposed from the IEEE 802.15.3a research group, established in MATLAB. Thus, by simply adjust the characteristics of each channel model, e.g. mean excess delay and center frequency, we can estimate the transmission performance of the proposed transceiver system through different communication situations. The main contributions of this thesis are: • A novel mixed radix 128-point FFT algorithm by using multipath pipelined architecture is proposed. The complex multipliers for each processing stage are designed by using modified shift-add architectures. The system wordlength and twiddle word-length are compared and selected based on Signal to Quantization Noise Ratio (SQNR) and power analysis. • IFFT processor performance is analyzed under different Block Floating Point (BFP) arithmetic situations for overflow control, so as to find out the perfect architecture of IFFT algorithm based on the proposed FFT processor. • An innovative low complex timing synchronization and compensation scheme, which consists of Packet Detector (PD) and Timing Offset Estimation (TOE) functions, for MB-OFDM UWB receiver system is employed. By simplifying the cross-correlation and maximum likelihood functions to signbit only, the computational complexity is significantly reduced. • A 64 state soft-decision Viterbi Decoder system by using high speed radix-4 Add-Compare-Select architecture is proposed. Two-pointer Even algorithm is also introduced into the Trace Back unit in the aim of hardware-efficiency. • Several state-of-the-art technologies are integrated into the complete baseband transceiver system, in the aim of implementing a highly-optimized UWB communication system. • An improved design flow is proposed for complex system implementation which can be used for general Field-Programmable Gate Array (FPGA) designs. The design method not only dramatically reduces the time for functional verification, but also provides automatic analysis such as errors and output delays for the implemented hardware systems. • A virtual communication environment is established for validating the proposed MB-OFDM transceiver system. This methodology is proved to be easy for usage and convenient for analyzing the digital baseband system without analog frontend under different communication environments. This PhD thesis is organized in six chapters. In the chapter 1 a brief introduction to the UWB field, as well as the related work, is done, along with the motivation of MBOFDM system development. In the chapter 2, the general information and requirement of MB-OFDM UWB wireless communication protocol is presented. In the chapter 3, the architecture of the MB-OFDM digital baseband transceiver system is presented. The design of the proposed algorithm and architecture for each processing element is detailed in this chapter. Design challenges of such system involve trade-off discussions among design complexity, power consumption, hardware cost, system performance, and some other aspects. All these factors are analyzed and discussed. In the chapter 4, the hardware/software co-design methodology is proposed. Each step of this design flow will be detailed by taking some examples that we met during system development. Then, taking advantages of this design strategy, the Virtual Communication procedure is carried out so as to test and analyze the proposed transceiver architecture. Experimental results from the co-simulation and synthesis report of the implemented FPGA system are given in the chapter 5. The chapter 6 includes conclusions and future work, as well as the results derived from this PhD work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct Steam Generation (DSG) in Linear Fresnel (LF) solar collectors is being consolidated as a feasible technology for Concentrating Solar Power (CSP) plants. The competitiveness of this technology relies on the following main features: water as heat transfer fluid (HTF) in Solar Field (SF), obtaining high superheated steam temperatures and pressures at turbine inlet (500ºC and 90 bar), no heat tracing required to avoid HTF freezing, no HTF degradation, no environmental impacts, any heat exchanger between SF and Balance Of Plant (BOP), and low cost installation and maintenance. Regarding to LF solar collectors, were recently developed as an alternative to Parabolic Trough Collector (PTC) technology. The main advantages of LF are: the reduced collector manufacturing cost and maintenance, linear mirrors shapes versus parabolic mirror, fixed receiver pipes (no ball joints reducing leaking for high pressures), lower susceptibility to wind damages, and light supporting structures allowing reduced driving devices. Companies as Novatec, Areva, Solar Euromed, etc., are investing in LF DSG technology and constructing different pilot plants to demonstrate the benefits and feasibility of this solution for defined locations and conditions (Puerto Errado 1 and 2 in Murcia Spain, Lidellin Newcastle Australia, Kogran Creek in South West Queensland Australia, Kimberlina in Bakersfield California USA, Llo Solar in Pyrénées France,Dhursar in India,etc). There are several critical decisions that must be taken in order to obtain a compromise and optimization between plant performance, cost, and durability. Some of these decisions go through the SF design: proper thermodynamic operational parameters, receiver material selection for high pressures, phase separators and recirculation pumps number and location, pipes distribution to reduce the amount of tubes (reducing possible leaks points and transient time, etc.), etc. Attending to these aspects, the correct design parameters selection and its correct assessment are the main target for designing DSG LF power plants. For this purpose in the recent few years some commercial software tools were developed to simulatesolar thermal power plants, the most focused on LF DSG design are Thermoflex and System Advisor Model (SAM). Once the simulation tool is selected,it is made the study of the proposed SFconfiguration that constitutes the main innovation of this work, and also a comparison with one of the most typical state-of-the-art configuration. The transient analysis must be simulated with high detail level, mainly in the BOP during start up, shut down, stand by, and partial loads are crucial, to obtain the annual plant performance. An innovative SF configurationwas proposed and analyzed to improve plant performance. Finally it was demonstrated thermal inertia and BOP regulation mode are critical points in low sun irradiation day plant behavior, impacting in annual performance depending on power plant location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Software Engineering (SE) community has historically focused on working with models to represent functionality and persistence, pushing interaction modelling into the background, which has been covered by the Human Computer Interaction (HCI) community. Recently, adequately modelling interaction, and specifically usability, is being considered as a key factor for success in user acceptance, making the integration of the SE and HCI communities more necessary. If we focus on the Model-Driven Development (MDD) paradigm, we notice that there is a lack of proposals to deal with usability features from the very first steps of software development process. In general, usability features are manually implemented once the code has been generated from models. This contradicts the MDD paradigm, which claims that all the analysts? effort must be focused on building models, and the code generation is relegated to model to code transformations. Moreover, usability features related to functionality may involve important changes in the system architecture if they are not considered from the early steps. We state that these usability features related to functionality can be represented abstractly in a conceptual model, and their implementation can be carried out automatically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ?traditional? set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified, easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El interés creciente en encontrar alimentos precocinados congelados que se asemejen a productos naturales, capaces de superar un procesado con el menor daño, ha generado un aumento en el estudio de nuevos productos en este campo de la investigación. Las características de cada matriz alimentaria, la composición y estructura de los ingredientes, así como el efecto de las interacciones entre ellos, modifica la textura, estructura y las propiedades físicas y sensoriales del alimento, así como su aceptación por el consumidor. En este contexto, la investigación realizada en esta tesis doctoral se ha llevado a cabo en puré de patata considerado como una matriz alimentaria semisólida y se ha centrado en analizar los efectos de la concentración y modificación de la composición en las propiedades reológicas y de textura, en las propiedades físico-químicas y estructurales, así como en los atributos sensoriales de los purés de patata cuando a estos se le añaden diferentes ingredientes funcionales como fibra de guisante, inulina, aceite de oliva, aislado de proteína de soja, ácidos grasos omega 3 y/o sus mezclas. Para ello, se han realizado cuatro estudios donde se determinan las propiedades reológicas mediante ensayos dinámicos oscilatorios y en estado estacionario, los parámetros instrumentales de textura mediante ensayos de extrusión inversa y de penetración cónica, además de los cambios estructurales a través de cromatografía iónica con detector de pulsos amperométrico, cromatografía de gases con detector de ionización de llama y microscopía electrónica de barrido. Conjuntamente, se han evaluado los atributos sensoriales de los diferentes purés generando los descriptores que mejor definen la calidad sensorial del producto, utilizando un panel de jueces entrenados y valorándose la aceptación global de los nuevos productos mediante un panel de consumidores. En un primer estudio, el puré de patata natural congelado elaborado con crioprotectores se enriqueció con fibra dietética insoluble (fibra de guisante), fibra dietética soluble (inulina) y sus mezclas. La fibra de guisante influyó significativa y negativamente en la textura del puré de patata, percibiéndose en el producto un incremento de la dureza y de la arenosidad, mientras que la inulina produjo un ablandamiento del sistema. En un segundo estudio, el puré de patata natural fresco y congelado/descongelado elaborado con y sin crioprotectores, se enriqueció con fibra dietética soluble (inulina), aceite de oliva virgen extra y sus mezclas. La adición de estos dos ingredientes generó un ablandamiento de la matriz del sistema, produciéndose, sin embargo, un efecto sinérgico entre ambos ingredientes funcionales. La inulina tuvo un efecto más significativo en la viscosidad aparente del producto, mientras que el aceite de oliva virgen extra afectó más significativamente a la pseudoplasticidad, al índice de consistencia y a la viscosidad plástica del mismo. El proceso de congelación y descongelación utilizado favoreció la reducción del tamaño de las partículas de inulina haciéndolas imperceptibles al paladar, obteniéndose productos más cremosos y con mayor aceptabilidad global que sus homólogos frescos. En un tercer estudio, el puré de patata natural fresco y congelado/descongelado elaborado con crioprotectores se enriqueció con mezclas de fibra dietética soluble (inulina) y aislado de proteína de soja. Los resultados demostraron que el ciclo de congelación y descongelación realizado no afecta el grado de polimerización de la inulina. La estructura química de la inulina tampoco se vio afectada por la incorporación de la soja. El proceso de congelación/descongelación, así como la adición de concentraciones altas de inulina y bajas de aislado de proteína de soja, favorecen la disminución de la contribución de la componente viscosa en las propiedades viscoelásticas del puré de patata. La cremosidad fue el único atributo sensorial que presentó una correlación lineal significativa entre las puntuaciones otorgadas por panelistas entrenados y no entrenados. Por último, se elaboró un puré de patata natural fresco y congelado/descongelado optimizado con crioprotectores y enriquecido con la suma de ácido docosahexaenoico (DHA, C22:6 n-3) y ácido eicosapentaenoico (EPA, C20:5 n-3) y con ácido α-linolénico (ALA, C18:3 n-3) microencapsulados. El ciclo de congelación y descongelación no afectó al perfil de ácidos grasos del puré de patata. La adición de omega 3 procedente de aceites de lino y pescado microencapsulados mejora los indicadores nutricionales que definen la calidad de la grasa, obteniéndose un producto más saludable. ABSTRACT The growing interest in finding frozen precooked products that are like a natural product and capable of withstanding initial processing with minimum damage and remaining stable during preservation and reheating prior to consumption has generated an increase in studies of new products in this field of research. The characteristics of each food matrix, the composition and structure of the ingredients and the effect of interactions between them alter the texture, structure and physical and sensory properties of the food product and its acceptance by the consumer. In this context, the research conducted in this doctoral thesis was carried out on mashed potato, considered as a semi-solid food matrix, and focused on analysing the effects of concentration and modification of the composition of the mashed potato matrix on the rheological and textural properties, physicochemical and structural properties and sensory attributes of mashed potato when various functional ingredients are added to it, such as pea fibre, inulin, olive oil, soy protein isolate, omega 3 fatty acids and/or mixtures of these ingredients. Four studies were conducted for this purpose. Rheological properties were determined by oscillatory dynamic tests and stationary state tests, and instrumental texture parameters by backward extrusion and cone penetration tests. Structural changes were studied by ion chromatography with pulsed amperometric detector, gas chromatography with flame ionisation detector and scanning electron microscopy. The sensory attributes of the various mashed potato mixtures were evaluated by generating the descriptors that best defined the sensory quality of the products and using a panel of trained judges, and overall acceptance of the new products was evaluated by a panel of consumers. In the first study, frozen natural mashed potato incorporating cryoprotectants was enriched with insoluble dietary fibre (pea fibre), soluble dietary fibre (inulin) and mixtures of the two. Pea fibre had a significant negative influence on the texture of the mashed potato, producing an increase in hardness and granularity, whereas inulin produced a softening of the system. In the second study, fresh and frozen/thawed natural mashed potato prepared with and without cryoprotectants was enriched with soluble dietary fibre (inulin), extra virgin olive oil and mixtures of the two. The addition of these two ingredients generated softening of the matrix of the system, but a synergic effect between the two functional ingredients was produced. Inulin had a more significant effect on the apparent viscosity of the product, whereas extra virgin olive oil had a more significant effect on its pseudoplasticity, consistency index and plastic viscosity. The freezing and thawing process that was used contributed to a reduction in the size of the inulin particles, making them imperceptible to the palate and producing creamier products with greater overall acceptability than their fresh equivalents. In the third study, the fresh and frozen/thawed natural mashed potato incorporating cryoprotectants was enriched with mixtures of soluble dietary fibre (inulin) and soy protein isolate. The results showed that the freezing and thawing process that was performed did not affect the degree of polymerisation of the inulin. The chemical structure of the inulin was also not affected by the incorporation of soy. The freezing and thawing process and the addition of high concentrations of inulin and low concentrations of soy protein isolate favoured a decrease in the contribution of the viscous component to the viscoelastic properties of the mashed potato. Creaminess was the only sensory attribute that presented a significant linear correlation between the scores given by trained and untrained panellists. Lastly, fresh and frozen/thawed natural mashed potato optimised with cryoprotectants was prepared and enriched with the sum of docosahexaenoic acid (DHA, C22:6 n-3) and eicosapentaenoic acid (EPA, C20:5 n-3) and with α-linolenic acid (ALA, C18:3 n-3), microencapsulated. The freezing and thawing process did not affect the fatty acid profile of the mashed potato. The addition of omega 3 obtained from microencapsulated linseed and fish oils improved the nutritional indicators that define the quality of the fat, producing a healthier product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical con- nections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 dif- ferent brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very- large-scale integration circuits analyses, shows that func- tional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrange- ments for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal?ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organi- zations that can only be identified when the physical locations of the nodes are included in the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre- sponding functional connections. We applied beamformer source reconstruction to the resting state MEG record- ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was ob- tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re- gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introduc- ing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La investigación para el conocimiento del cerebro es una ciencia joven, su inicio se remonta a Santiago Ramón y Cajal en 1888. Desde esta fecha a nuestro tiempo la neurociencia ha avanzado mucho en el desarrollo de técnicas que permiten su estudio. Desde la neurociencia cognitiva hoy se explican muchos modelos que nos permiten acercar a nuestro entendimiento a capacidades cognitivas complejas. Aun así hablamos de una ciencia casi en pañales que tiene un lago recorrido por delante. Una de las claves del éxito en los estudios de la función cerebral ha sido convertirse en una disciplina que combina conocimientos de diversas áreas: de la física, de las matemáticas, de la estadística y de la psicología. Esta es la razón por la que a lo largo de este trabajo se entremezclan conceptos de diferentes campos con el objetivo de avanzar en el conocimiento de un tema tan complejo como el que nos ocupa: el entendimiento de la mente humana. Concretamente, esta tesis ha estado dirigida a la integración multimodal de la magnetoencefalografía (MEG) y la resonancia magnética ponderada en difusión (dMRI). Estas técnicas son sensibles, respectivamente, a los campos magnéticos emitidos por las corrientes neuronales, y a la microestructura de la materia blanca cerebral. A lo largo de este trabajo hemos visto que la combinación de estas técnicas permiten descubrir sinergias estructurofuncionales en el procesamiento de la información en el cerebro sano y en el curso de patologías neurológicas. Más específicamente en este trabajo se ha estudiado la relación entre la conectividad funcional y estructural y en cómo fusionarlas. Para ello, se ha cuantificado la conectividad funcional mediante el estudio de la sincronización de fase o la correlación de amplitudes entre series temporales, de esta forma se ha conseguido un índice que mide la similitud entre grupos neuronales o regiones cerebrales. Adicionalmente, la cuantificación de la conectividad estructural a partir de imágenes de resonancia magnética ponderadas en difusión, ha permitido hallar índices de la integridad de materia blanca o de la fuerza de las conexiones estructurales entre regiones. Estas medidas fueron combinadas en los capítulos 3, 4 y 5 de este trabajo siguiendo tres aproximaciones que iban desde el nivel más bajo al más alto de integración. Finalmente se utilizó la información fusionada de MEG y dMRI para la caracterización de grupos de sujetos con deterioro cognitivo leve, la detección de esta patología resulta relevante en la identificación precoz de la enfermedad de Alzheimer. Esta tesis está dividida en seis capítulos. En el capítulos 1 se establece un contexto para la introducción de la connectómica dentro de los campos de la neuroimagen y la neurociencia. Posteriormente en este capítulo se describen los objetivos de la tesis, y los objetivos específicos de cada una de las publicaciones científicas que resultaron de este trabajo. En el capítulo 2 se describen los métodos para cada técnica que fue empleada: conectividad estructural, conectividad funcional en resting state, redes cerebrales complejas y teoría de grafos y finalmente se describe la condición de deterioro cognitivo leve y el estado actual en la búsqueda de nuevos biomarcadores diagnósticos. En los capítulos 3, 4 y 5 se han incluido los artículos científicos que fueron producidos a lo largo de esta tesis. Estos han sido incluidos en el formato de la revista en que fueron publicados, estando divididos en introducción, materiales y métodos, resultados y discusión. Todos los métodos que fueron empleados en los artículos están descritos en el capítulo 2 de la tesis. Finalmente, en el capítulo 6 se concluyen los resultados generales de la tesis y se discuten de forma específica los resultados de cada artículo. ABSTRACT In this thesis I apply concepts from mathematics, physics and statistics to the neurosciences. This field benefits from the collaborative work of multidisciplinary teams where physicians, psychologists, engineers and other specialists fight for a common well: the understanding of the brain. Research on this field is still in its early years, being its birth attributed to the neuronal theory of Santiago Ramo´n y Cajal in 1888. In more than one hundred years only a very little percentage of the brain functioning has been discovered, and still much more needs to be explored. Isolated techniques aim at unraveling the system that supports our cognition, nevertheless in order to provide solid evidence in such a field multimodal techniques have arisen, with them we will be able to improve current knowledge about human cognition. Here we focus on the multimodal integration of magnetoencephalography (MEG) and diffusion weighted magnetic resonance imaging. These techniques are sensitive to the magnetic fields emitted by the neuronal currents and to the white matter microstructure, respectively. The combination of such techniques could bring up evidences about structural-functional synergies in the brain information processing and which part of this synergy fails in specific neurological pathologies. In particular, we are interested in the relationship between functional and structural connectivity, and how two integrate this information. We quantify the functional connectivity by studying the phase synchronization or the amplitude correlation between time series obtained by MEG, and so we get an index indicating similarity between neuronal entities, i.e. brain regions. In addition we quantify structural connectivity by performing diffusion tensor estimation from the diffusion weighted images, thus obtaining an indicator of the integrity of the white matter or, if preferred, the strength of the structural connections between regions. These quantifications are then combined following three different approaches, from the lowest to the highest level of integration, in chapters 3, 4 and 5. We finally apply the fused information to the characterization or prediction of mild cognitive impairment, a clinical entity which is considered as an early step in the continuum pathological process of dementia. The dissertation is divided in six chapters. In chapter 1 I introduce connectomics within the fields of neuroimaging and neuroscience. Later in this chapter we describe the objectives of this thesis, and the specific objectives of each of the scientific publications that were produced as result of this work. In chapter 2 I describe the methods for each of the techniques that were employed, namely structural connectivity, resting state functional connectivity, complex brain networks and graph theory, and finally, I describe the clinical condition of mild cognitive impairment and the current state of the art in the search for early biomarkers. In chapters 3, 4 and 5 I have included the scientific publications that were generated along this work. They have been included in in their original format and they contain introduction, materials and methods, results and discussion. All methods that were employed in these papers have been described in chapter 2. Finally, in chapter 6 I summarize all the results from this thesis, both locally for each of the scientific publications and globally for the whole work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

State convergence is a control strategy that was proposed in the early 2000s to ensure stability and transparency in a teleoperation system under specific control gains values. This control strategy has been implemented for a linear system with or without time delay. This paper represents the first attempt at demonstrating, theoretically and experimentantally, that this control strategy can also be applied to a nonlinear teleoperation system with n degrees of freedom and delay in the communication channel. It is assumed that the human operator applies a constant force on the local manipulator during the teleoperation. In addition, the interaction between the remote manipulator and the environment is considered passive. Communication between the local and remote sites is made by means of a communication channel with variable time delay. In this article the theory of Lyapunov-Krasovskii was used to demonstrate that the local-remote teleoperation system is asymptotically stable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we proposes a control strategy that allows the remote manipulator follow the local manipulator through the state convergence even if it has a delay in the communication channel. The bilateral control of the teleoperator system considers the case were the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis was performed using Lyapunov- Krasovskii functional, it showed for the case with constant delay, that using a proposed control algorithm by state convergence resulted in asymptotically stable, local and remote the nonlinear teleoperation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we proposes a control strategy by state convergence applied to bilateral control of a nonlinear teleoperator system with constant delay. The bilateral control of the teleoperator system considers the case when the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis is performed using Lyapunov-Krasovskii functional, it showed that using an control algorithm by state convergence for the case with constant delay, the nonlinear local and remote teleoperation system is asymptotically stable, also speeds converge to zero and position tracking is achieved. This work also presents the implementation of an experimental platform. The mechanical structure of the arm that is located in the remote side has been built and the electric servomechanism has been mounted to control their movement.