28 resultados para forage maize
Resumo:
This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification of the crop rows. The vision system is designed with a defined geometry and installed onboard a mobile agricultural vehicle, i.e. submitted to vibrations, gyros or uncontrolled movements. Crop rows can be estimated by applying geometrical parameters under image perspective projection. Because of the above undesired effects, most often, the estimation results inaccurate as compared to the real crop rows. The proposed expert system exploits the human knowledge which is mapped into two modules based on image processing techniques. The first one is intended for separating green plants (crops and weeds) from the rest (soil, stones and others). The second one is based on the system geometry where the expected crop lines are mapped onto the image and then a correction is applied through the well-tested and robust Theil–Sen estimator in order to adjust them to the real ones. Its performance is favorably compared against the classical Pearson product–moment correlation coefficient.
Resumo:
The area cultivated using conservation tillage has recently increased in central Spain. However, soil compaction and water retention with conservation tillage still remains a genuine concern for landowners in this region be- cause of its potential effect on the crop growth and yield. The aim of this research is to determine the short- term influences of four tillage treatments on soil physical properties. In the experiment, bulk density, cone index, soil water potential, soil temperature and maize (Zea mays L.) productivity have been measured. A field experiment was established in spring of 2013 on a loamy soil. The experiment compared four tillage methods (zero tillage, ZT; reservoir tillage, RT; minimum tillage, MT; and conventional tillage, CT). Soil bulk density and soil cone index were measured during maize growing season and at harvesting time. Furthermore, the soil water potential was monitored by using a wireless sensors network with sensors at 20 and 40 cm depths. Also, soil temperatures were registered at depths of 5 and 12 cm. Results indicated that there were significant differ- ences between soil bulk density and cone index of ZT method and those of RT, MT, and CT, during the growing season; although, this difference was not significant at the time of harvesting in some soil layers. Overall, in most soil layers, tillage practice affected bulk density and cone index in the order: ZT N RT N MT N CT. Regardless oftheentireobservationperiod,results exhibited that soils under ZT and RT treatments usually resulted in higher water potential and lower soil temperature than the other two treatments at both soil depths. In addition, clear differences in maize grain yield were observed between ZT and CT treatments, with a grain yield (up to 15.4%) increase with the CT treatment. On the other hand, no significant differences among (RT, MT, and CT) on maizeyieldwerefound.Inconclusion,the impact of soil compaction increase and soil temperature decrease,pro- duced by ZT treatment is a potential reason for maize yield reduction in this tillage method. We found that RT could be certainly a viable option for farmers incentral Spain,particularly when switching to conservation tillage from conventional tillage. This technique showed a moderate and positive effect on soil physical properties and increased maize yields compared to ZT and MT, and provides an opportunity to stabilize maize yields compared to CT.
Resumo:
An in vitro experiment was carried out using the Hohenheim gas production technique to evaluate 24-h gas production, apparently and truly degraded dry matter (DM), partitioning factor (PF), short chain fatty acids, crude protein (CP) and carbohydrate (CHO) fractionation of grass and multipurpose tree species (MPTS) foliage diets. Four grasses and three MPTS were used to formulate 12 diets of equal mixtures (0.5:0.5 on DM basis) of each grass with each MPTS. In vitro gas production was terminated after 24 h for each diet. True DM degradability was measured from incubated samples and combined with gas volume to estimate PF. Diets had greater (P<0.001) CP (102–183 g/kg DM) content than sole grasses (66–131 g/kg DM) and lower (P<0.001) concentrations of fibre fractions. Contrary to in vitro apparently degraded DM, in vitro truly degraded DM coefficient was greater (P<0.001) in diets (0.63–0.77) than in sole grasses (0.48–0.68). The PF was on average higher in diets than in sole grasses. The proportion of potentially degradable CP fractions (A1, B1, B2 and B3, based on the Cornell Net Carbohydrate and Protein System) in the diets ranged from 971 to 989 g/kg CP. Crude protein fractions, A and B2 were greater in diets but B1 and B3 fractions were less in diets than in sole grasses. A similar trend was also observed in the CHO fractions. Results showed that the nutritive value of the four grasses was improved when MPTS leaves were incorporated into the diet and this could ensure higher productivity of the animals.
Resumo:
Long-term conservation tillage can modify vertical distribution of nutrients in soil profiles and alter nutrient availability and yields of crops.
Resumo:
The aim of the study was to investigate the effects of a standardized mixture of a commercial blend of phytogenic feed additives containing 5% carvacrol, 3% cinnamaldehyde, and 2% capsicum on utilization of dietary energy and performance in broiler chickens. Four experimental diets were offered to the birds from 7 to 21 d of age. These included 2 basal control diets based on either wheat or maize that contained 215 g CP/kg and 12.13 MJ/kg ME and another 2 diets using the basal control diets supplemented with the plant extracts combination at 100 mg/kg diet. Each diet was fed to 16 individually penned birds following randomization. Dietary plant extracts improved feed intake and weight gain (P < 0.05) and slightly (P < 0.1) improved feed efficiency of birds fed the maize-based diet. Supplementary plant extracts did not change dietary ME (P > 0.05) but improved (P < 0.05) dietary NE by reducing the heat increment (P < 0.05) per kilogram feed intake. Feeding phytogenics improved (P < 0.05) total carcass energy retention and the efficiency of dietary ME for carcass energy retention. The number of interactions between type of diet and supplementary phytogenic feed additive suggest that the chemical composition and the energy to protein ratio of the diet may influence the efficiency of phytogenics when fed to chickens. The experiment showed that although supplementary phytogenic additives did not affect dietary ME, they caused a significant improvement in the utilization of dietary energy for carcass energy retention but this did not always relate to growth performance.
Resumo:
Adjusting N fertilizer application to crop requirements is a key issue to improve fertilizer efficiency, reducing unnecessary input costs to farmers and N environmental impact. Among the multiple soil and crop tests developed, optical sensors that detect crop N nutritional status may have a large potential to adjust N fertilizer recommendation (Samborski et al. 2009). Optical readings are rapid to take and non-destructive, they can be efficiently processed and combined to obtain indexes or indicators of crop status. However, other physiological stress conditions may interfere with the readings and detection of the best crop nutritional status indicators is not always and easy task. Comparison of different equipments and technologies might help to identify strengths and weakness of the application of optical sensors for N fertilizer recommendation. The aim of this study was to evaluate the potential of various ground-level optical sensors and narrow-band indices obtained from airborne hyperspectral images as tools for maize N fertilizer recommendations. Specific objectives were i) to determine which indices could detect differences in maize plants treated with different N fertilizer rates, and ii) to evaluate its ability to identify N-responsive from non-responsive sites.
Resumo:
The requirements for a good stand in a no-till field are the same as those for conventional planting as well as added field and machinery management. Among the various factors that contribute towards producing a successful maize crop, seed depth placement is a key determinant. Although most no-till planters on the market work well under good soil and residue conditions, adjustments and even modifications are frequently needed when working with compacted or wet soils or with heavy residues. The main objective of this study, carried out in 2010, 2011 and 2012, was to evaluate the vertical distribution and spatial variability of seed depth placement in a maize crop under no-till conditions, using precision farming technologies and conventional no-till seeders. The results obtained indicate that the seed depth placement was affected by soil moisture content and forward speed. The seed depth placement was negatively correlated with soil resistance and seeding depth had a significant impact on mean emergence time and the percentage of emerged plants. Shallow average depth values and high coefficients of variation suggest a need for improvements in controlling the seeders’ sowing depth mechanism or more accurate calibration by operators in the field.
Resumo:
Among the various factors that contribute towards producing a successful maize crop, seed depth placement is a key determinant, especially in a no-tillage system. The main objective of this work was to evaluate the spatial variability of seed depth placement and crop establishment in a maize crop under no-tillage conditions, using precision farming technologies. The obtained results indicate that seed depth placement was significantly affected by soil moisture content, while a very high coefficient of variation of 39% was found for seed depth. Seeding depth had a significant impact on mean emergence time and percentage of emerged plants. Shallow average depth values and the high coefficient of variation suggest a need for improvement in controlling the seeders sowing depth.
Resumo:
Climate variability and changes in the frequency of extremes events have a direct impact on crop damages and yield. In a former work of Capa et al. (2013) the crop yield variability has been studied using different reanalyses datasets with the aim of extending the time series of potential yield. The reliability of these time series have been checked using observational data. The influence of the sea surface temperature on the crop yield variability has been studied, finding a relation with El Niño phenomenon. The highest correlation between El Niño and yield was during 1960-1980. This study aims to analyse the dynamical mechanism of El Niño impacts on maize yield in Spain during 1960-1980 by comparison with atmospheric circulation patterns.
Resumo:
Entre os vários fatores que contribuem para a produção de uma cultura de milho, a distribuição vertical dos semeadores avaliada através da localização da semente em profundidade é um fator-chave, especialmente na técnica de sementeira direta. Simultaneamente, dada a complexidade dos ecossistemas naturais e agrícolas em sistemas de agricultura de conservação, a gestão diferenciada e localizada das parcelas assume um importante papel na análise e gestão da variabilidade das propriedades do solo e estabelecimento das culturas, nomeadamente utilizando informação geo referenciada e tecnologia expedita. Assim, o principal objetivo desta Tese foi a avaliação em culturas de milho da variabilidade espacial da localização de semente em profundidade e estabelecimento da cultura em sementeira direta usando sistemas convencionais de controlo de profundidade, tendo-se comparado com diferentes sistemas de mobilização e recorrendo a tecnologias de agricultura de precisão. Os ensaios decorreram na região Mediterrânea do Alentejo, em propriedades agrícolas no decorrer das campanhas de 2010, 2011, 2012 e 2015 em 6 diferentes campos experimentais. O trabalho experimental consistiu em ensaios com avaliações in loco do solo e cultura, consumo de combustível das operações e deteção remota. Os resultados obtidos indicam que não só o sistema de mobilização afetou a localização da semente em profundidade, como em sementeira direta a profundidade de sementeira foi afetada pelo teor de humidade do solo, resistência do solo à profundidade e velocidade da operação de sementeira. Adicionalmente observaram-se condições heterogéneas de emergência e estabelecimento da cultura afetadas por condições físicas de compactação do solo. Comparando os diferentes sistemas de mobilização, obteve-se uma significativa redução de combustível para a técnica de sementeira direta, apesar de se terem observado diferenças estatísticas significativas considerando diferentes calibrações de profundidade de sementeira Do trabalho realizado nesta Tese ressalva-se a importância que as tecnologias de agricultura de precisão podem ter no acompanhamento e avaliação de culturas em sementeira direta, bem como a necessidade de melhores procedimentos no controlo de profundidade dos semeadores pelo respetivos operadores ou ao invés, a adoção de semeadores com mecanismos ativos de controlo de profundidade. ABSTRACT Among the various factors that contribute towards producing a successful maize crop, seeders vertical distribution evaluated through seed depth placement is a key determinant, especially under a no-tillage technique. At the same time in conservation agriculture systems due to the complexity of natural and agricultural ecosystems site specific management became an important approach to understand and manage the variability of soil properties and crop establishment, especially when using geo spatial information and affording readily technology Thus, the main objective of this Thesis was to evaluate the spatial variability of seed depth placement and crop establishment in maize crops under no-tillage conditions compared to different tillage systems, using conventional seed depth control no till seeders and precision farming technologies. Trials were carried out in the Mediterranean region of Alentejo, in private farms along the sowing operations season over the years 2010, 2011, 2012 and 2015 in 6 different experimental fields. Experimental work covered field tests with in loco soil and crop evaluations, fuel operation evaluations and aerial sensing. The results obtained indicate that not only tillage system affected seed depth placement but under no till conditions seed depth was affected by soil moisture content, soil resistance to penetration and seeders forward speed. In addition uneven crop seedling and establishment depended on seed depth placement and could be affected by physical problems of compaction layers. Significant reduction in fuel consumption was observed for no till operations although significant differences observed according to different setting calibrations of seed depth control. According to the results, precision agriculture is an important tool to evaluate crops under no till conditions and seed depth mechanisms should be more accurate by the operators or is determinant the adoption of new active depth control technology to improve seeders performance.
Resumo:
3D crop reconstruction with a high temporal resolution and by the use of non-destructive measuring technologies can support the automation of plant phenotyping processes. Thereby, the availability of such 3D data can give valuable information about the plant development and the interaction of the plant genotype with the environment. This article presents a new methodology for georeferenced 3D reconstruction of maize plant structure. For this purpose a total station, an IMU, and several 2D LiDARs with different orientations were mounted on an autonomous vehicle. By the multistep methodology presented, based on the application of the ICP algorithm for point cloud fusion, it was possible to perform the georeferenced point clouds overlapping. The overlapping point cloud algorithm showed that the aerial points (corresponding mainly to plant parts) were reduced to 1.5%–9% of the total registered data. The remaining were redundant or ground points. Through the inclusion of different LiDAR point of views of the scene, a more realistic representation of the surrounding is obtained by the incorporation of new useful information but also of noise. The use of georeferenced 3D maize plant reconstruction at different growth stages, combined with the total station accuracy could be highly useful when performing precision agriculture at the crop plant level.
Resumo:
El Niño phenomenon is the leading mode of sea surface temperature interannual variability. It can affect weather patterns worldwide and therefore crop production. Crop models are useful tools for impact and predictability applications, allowing to obtain long time series of potential and attainable crop yield, unlike to available time series of observed crop yield for many countries. Using this tool, crop yield variability in a location of Iberia Peninsula (IP) has been previously studied, finding predictability from Pacific El Niño conditions. Nevertheless, the work has not been done for an extended area. The present work carries out an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The potential usefulness of this study is to apply the relationships found to improving crop forecasting in IP.
Resumo:
Climate projections indicate that rising temperatures will affect summer crops in the southern Iberian Peninsula. The aim of this study was to obtain projections of the impacts of rising temperatures, and of higher frequency of extreme events on irrigated maize, and to evaluate some adaptation strategies. The study was conducted at several locations in Andalusia using the CERES-Maize crop model, previously calibrated/validated with local experimental datasets. The simulated climate consisted of projections from regional climate models from the ENSEMBLES project; these were corrected for daily temperature and precipitation with regard to the E-OBS observational dataset. These bias-corrected projections were used with the CERES-Maize model to generate future impacts. Crop model results showed a decrease in maize yield by the end of the 21st century from 6 to 20%, a decrease of up to 25% in irrigation water requirements, and an increase in irrigation water productivity of up to 22%, due to earlier maturity dates and stomatal closure caused by CO2 increase. When adaptation strategies combining earlier sowing dates and cultivar changes were considered, impacts were compensated, and maize yield increased up to 14%, compared with the baseline period (1981-2010), with similar reductions in crop irrigation water requirements. Effects of extreme maximum temperatures rose to 40% at the end of the 21st century, compared with the baseline. Adaptation resulted in an overall reduction in extreme Tmax damages in all locations, with the exception of Granada, where losses were limited to 8%.