53 resultados para enterprise project management
Resumo:
This work introduces a web-based learning environment to facilitate learning in Project Management. The proposed web-based support system integrates methodological procedures and information systems, allowing to promote learning among geographically-dispersed students. Thus, students who are enrolled in different universities at different locations and attend their own project management courses, share a virtual experience in executing and managing projects. Specific support systems were used or developed to automatically collect information about student activities, making it possible to monitor the progress made on learning and assess learning performance as established in the defined rubric.
Resumo:
The objective of this paper is to present a framework that can facilitate the university level learning process in the Project Management of different students who are enrolled in different universities in different locations and attending their own Project Management courses, but running a virtual experience in executing and managing projects. The framework includes both information systems and methodological procedures that are integrated in the information system, making it possible to assess learning performance.
Resumo:
Para hacerse cargo del legado de las Plantas de Gas Manufacturado (MGP) en el Estado de Nueva York, la División de Remediación Medioambiental del Departamento de Conservación Medioambiental, creo las Investigaciones de las áreas afectadas y el Programa de Remediación Medioambiental. Con el paso de los años, la conciencia y entendimiento de la importancia y complejidad de estos proyectos fue creciendo, ya que las investigaciones realizadas daban fe del tamaño y extensión de la contaminación asociada a las plantas de gas manufacturado, propiedad ahora de las diversas compañías de gas que operan a lo largo y ancho del Estado de Nueva York. Tras varios años dentro del Programa de Remediación Medioambiental, muchas de estas compañías han intentado manejar estos vastos y complejos proyectos como han podido, dejándose llevar un poco, subestimando y pasando por alto muchos detalles, ya que al fin y al cabo son proyecto regulados por el estado y que, por tanto, son financiados enteramente por este. Esto ha ido causando en los últimos años grandes problemas a algunas Compañías que a la hora de reportar estos proyectos se han encontrado con una falta total de control y grandes lagunas que resolver. Una técnica para resolver estos problemas es hacer uso de grandes técnicas de gestión empresarial como es el Project Management. En este proyecto se exponen y desarrollan las técnicas que han de utilizarse para integrar la Gestión de Proyectos con el fin de poder gestionar y coordinar las competentes demandas de alcance, tiempo, costes, calidad, recursos, y riesgos con el fin de alcanzar los requerimientos y objetivos del proyecto y de la Compañía. ABSTRACT To address the Manufactured Gas Plant (MGP) legacy in New York State, the Department of Environmental Conservation’s Division of Environmental Remediation has established the MGP Site Investigation and Remediation Programs. With the passage of time the Department’s understanding of the complexity of these sites grew, as investigations identified the extend of the contamination problem associated with many MGPs, property of the Operating Companies in the State. Through many years under the Remediation Programs, some Operating Companies have tried to manage these large and complex projects as they could, underestimating and overlooking them, as they were, in fact, regulated and financed by the Department. This has cause a lot of controlling issues and gaps to solve to the companies. Now the companies are trying to solve this kind of problems using the more innovative management techniques, as Project Management. This project expose and explains how to integrate the project management processes into the MGP Projects under the Remediation Program, to manage and balance the competing demands of scope, time ,cost, quality, resources, and risk to meet the project and company’s requirements and objectives.
Resumo:
In the last decades, software systems have become an intrinsic element in our daily lives. Software exists in our computers, in our cars, and even in our refrigerators. Today’s world has become heavily dependent on software and yet, we still struggle to deliver quality software products, on-time and within budget. When searching for the causes of such alarming scenario, we find concurrent voices pointing to the role of the project manager. But what is project management and what makes it so challenging? Part of the answer to this question requires a deeper analysis of why software project managers have been largely ineffective. Answering this question might assist current and future software project managers in avoiding, or at least effectively mitigating, problematic scenarios that, if unresolved, will eventually lead to additional failures. This is where anti-patterns come into play and where they can be a useful tool in identifying and addressing software project management failure. Unfortunately, anti-patterns are still a fairly recent concept, and thus, available information is still scarce and loosely organized. This thesis will attempt to help remedy this scenario. The objective of this work is to help organize existing, documented software project management anti-patterns by answering our two research questions: · What are the different anti-patterns in software project management? · How can these anti-patterns be categorized?
Resumo:
According to the PMBOK (Project Management Body of Knowledge), project management is “the application of knowledge, skills, tools, and techniques to project activities to meet the project requirements” [1]. Project Management has proven to be one of the most important disciplines at the moment of determining the success of any project [2][3][4]. Given that many of the activities covered by this discipline can be said that are “horizontal” for any kind of domain, the importance of acknowledge the concepts and practices becomes even more obvious. The specific case of the projects that fall in the domain of Software Engineering are not the exception about the great influence of Project Management for their success. The critical role that this discipline plays in the industry has come to numbers. A report by McKinsey & Co [4] shows that the establishment of programs for the teaching of critical skills of project management can improve the performance of the project in time and costs. As an example of the above, the reports exposes: “One defense organization used these programs to train several waves of project managers and leaders who together administered a portfolio of more than 1,000 capital projects ranging in Project management size from $100,000 to $500 million. Managers who successfully completed the training were able to cut costs on most projects by between 20 and 35 percent. Over time, the organization expects savings of about 15 percent of its entire baseline spending”. In a white paper by the PMI (Project Management Institute) about the value of project management [5], it is stated that: “Leading organizations across sectors and geographic borders have been steadily embracing project management as a way to control spending and improve project results”. According to the research made by the PMI for the paper, after the economical crisis “Executives discovered that adhering to project management methods and strategies reduced risks, cut costs and improved success rates—all vital to surviving the economic crisis”. In every elite company, a proper execution of the project management discipline has become a must. Several members of the software industry have putted effort into achieving ways of assuring high quality results from projects; many standards, best practices, methodologies and other resources have been produced by experts from different fields of expertise. In the industry and the academic community, there is a continuous research on how to teach better software engineering together with project management [4][6]. For the general practices of Project Management the PMI produced a guide of the required knowledge that any project manager should have in their toolbox to lead any kind of project, this guide is called the PMBOK. On the side of best practices 10 and required knowledge for the Software Engineering discipline, the IEEE (Institute of Electrical and Electronics Engineers) developed the SWEBOK (Software Engineering Body of Knowledge) in collaboration with software industry experts and academic researchers, introducing into the guide many of the needed knowledge for a 5-year expertise software engineer [7]. The SWEBOK also covers management from the perspective of a software project. This thesis is developed to provide guidance to practitioners and members of the academic community about project management applied to software engineering. The way used in this thesis to get useful information for practitioners is to take an industry-approved guide for software engineering professionals such as the SWEBOK, and compare the content to what is found in the PMBOK. After comparing the contents of the SWEBOK and the PMBOK, what is found missing in the SWEBOK is used to give recommendations on how to enrich project management skills for a software engineering professional. Recommendations for members of the academic community on the other hand, are given taking into account the GSwE2009 (Graduated Software Engineering 2009) standard [8]. GSwE2009 is often used as a main reference for software engineering master programs [9]. The standard is mostly based on the content of the SWEBOK, plus some contents that are considered to reinforce the education of software engineering. Given the similarities between the SWEBOK and the GSwE2009, the results of comparing SWEBOK and PMBOK are also considered valid to enrich what the GSwE2009 proposes. So in the end the recommendations for practitioners end up being also useful for the academic community and their strategies to teach project management in the context of software engineering.
Resumo:
Facing the frequent failure of projects in rural areas with top-down approaches, there has been a promotion of participation of the local people in decisions that affect their territories (bottom-up approach) to promote sustainable regional development (Chambers, 1997; Lusthaus et al., 1999; Horton, 2004; Vazquez-Barquero, 2000). In fact participation was deemed necessary to ensure the success and sustainability of projects (UNDP, 2006; WRI, 2008; Davies, 2009). Hence, the progressive strengthening of the local population should be promoted so that they can acquire a range of skills and knowledge that allow them to manage resources properly and undertake productive activities in their territory (Contreras, 2000). These are intangibles and therefore difficult to measure. Hence, in this research a model of integration of intangibles in rural development projects management is proposed. The model designed supplements and enriches the conceptual framework ?Working with People? WWP (Cazorla et al, 2013).
Resumo:
The advancement of science and engineering projects is brewing major changes in the various phases of a project. These changes have produced more rigorous aspects of project management that tracks the research fronts of engineering and project management becomes key. However, research in engineering and project management in Spanish is hindered by access to information to enable the person concerned to ascertain the most recent and current research, limiting the exchange of information and strengthening research networks in this field interest with great implications in business, industry and scientific issues. Therefore, the article aims to present the state of the art of engineering research and project management in Spanish, using the analysis of scientific domains and network analysis of the research literature to identify and analyze relationships between authors and documents that establish the base and research fronts topic under study. The results also provide statistics on the contribution of international research in Spanish and scientific collaboration networks.
Resumo:
Este proyecto consiste en la construcción de un prototipo para la gestión de proyectos, destinada a usuarios del entorno profesional. La herramienta pretende servir de soporte a los equipos que realicen un proyecto dotando al usuario con la posibilidad de gestionar los tiempos del proyecto, gestión de requisitos, gestión de recursos, gestión de la documentación, etc. Adicionalmente, este trabajo llevará asociado un plan de negocio para poder estudiar la viabilidad del proyecto, en este plan de negocio se analizará; el entorno externo (competencia); análisis de las debilidades, fortalezas, amenazas y oportunidades; plan de marketing; plan económicofinanciero; análisis de riesgos del proyecto. A grandes rasgos, la herramienta desarrollada se compone de dos bases de datos (una relacional y otra no relacional), un conjunto de módulos que implementan la funcionalidad y una interfaz gráfica que proporciona a los usuarios una forma cómoda de interactuar con el sistema, principalmente ofrecerá las siguientes opciones: Gestión de proyectos Gestión de usuarios. Gestión de recursos Gestión de tiempos Cuadro de mando y notificaciones. ---ABSTRACT---This Project consist of the construction of a prototype for Project management, intended for users of the profesional environment. The software aims to support teams conducting a project by providing the user with the ability to manage time, requirements management, resource management, document management, etc. In addition, this work includes a business plan to study the viability of the project. This business plan addresses the following; analysis of the external enviroment; analysis of the strengths, weaknesses, opportunities and threats; marketing plan; economic and financial plan; analysis of project risks. In general terms, the developed tools are composed of two databases (relational and nonrelational), a set of modules that implement the functionality and a web interface that gives users a convenient way to interact with the system. The options that the system offers are: Project management User management Resource management Time management Dashboard and notifications
Resumo:
This paper presents a framework for project management competence assessment based on participant’s performance and contribution in a simulated environment. The proposed framework considers competence assessment through evidences and the participation of different roles. The system enforces the assessment of individual competences by means of a set of performance indicators. A specific case study is presented and the relationship between exhibited transversal competences and project quality is analysed.
Resumo:
Since 2010 the Industrial Engineering School at Universidad Politécnica de Madrid (ETSII UPM) has its Plan Study accredited by ABET. Since then a big motivation has been promoted from the management team encouraging teachers to work on the measurement and strengthening of student¿s competences. Generic skills or behavior acquired significant importance in the workplace, particularly in relation to project management. Because of this, and framed within the requirements of the European Higher Education Area (EHEA), the curriculum of the new degrees are being developed under the competence-based learning. This situation leads to the need to have a clear measurement tool skills as a basis for developing them within the curriculum. A group of multidisciplinary teachers have been working together during two years to design measuring instruments valid for engineering students.
Resumo:
La gestión de las tecnologías de la información tiene cada vez más importancia dentro de un mundo totalmente digitalizado y donde la capacidad de respuesta al cambio puede marcar el devenir de una compañía, y resulta cada vez más evidente que los modelos de gestión tradicionales utilizados en la mayoría de las compañías no son capaces de dar respuesta por si solos a estas nuevas necesidades. Aun teniendo identificado este área de mejora, son muchas las empresas reacias a abordar estos cambios, principalmente por el cambio rupturista que significa a nivel interno. De cara a facilitar esta transformación, se propone en este documento un modelo de transición controlada donde las grandes compañías puedan incorporar nuevas alternativas y herramientas ágiles de forma paulatina y asegurando que el proceso de cambio es seguro y efectivo. Mediante una modificación del ciclo de vida de proyecto dentro de la compañía, se incorporan en las áreas, equipos o dominios de la empresa que se identifiquen los nuevos modelos de gestión ágil, permitiendo así una transición gradual y controlada, y pudiendo además analizar los detalles sobre todo en etapas tempranas de la transformación. Una vez seleccionada el área o dominio objeto de la transformación, se realiza un análisis a nivel de Portfolio de proyectos, identificando aquellos que cumplen una serie de condiciones que les permiten ser gestionados utilizando modelos de gestión ágil. Para ello, se plantea una matriz de decisión con las principales variables a tener en cuenta a la hora de tomar una decisión. Una vez seleccionado y consensuado con los interesados el modelo de gestión utilizando la matriz de decisión, se plantean una serie de herramientas y métricas asociadas para que la gestión ágil del proyecto dé una visibilidad completa y detallada del estado en cada momento, asegurando un correcto proceso de gestión de proyectos para proveer visibilidad regular del progreso, riesgos, planes de contingencia y problemas, con las alertas y escalaciones adecuadas. Además de proponerse una serie de herramientas y métricas para la gestión ágil del proyecto, se plantean las modificaciones necesarias sobre las tipologías habituales de contrato y se propone un nuevo modelo de contrato: el Contrato Agile. La principal diferencia entre este nuevo modelo de contrato y los habituales es que, al igual que las metodologías ágiles, es ejecutado en segmentos o iteraciones. En definitiva, el objetivo de este documento es proveer un mecanismo que facilite la inclusión de nuevos modelos ágiles de gestión en grandes organizaciones, llevando a cabo una transición controlada, con herramientas y métricas adaptadas para tener visibilidad completa sobre los proyectos en todo momento.---ABSTRACT---The information technology management is every time more important in a totally digitized world, where the capacity to response the change could mark the future of a company, and results every time more evident that the traditional management models used in the most of the companies are not able to respond by themselves to these new necessities. Even having identified this improvement area, many companies are reluctant to address these changes, mainly due to the disruptive change that it means internally in the companies. In order to facilitate this transformation, this document proposed a controlled transition model to help the big companies to incorporate new alternatives and agile tools gradually and ensuring that the change process is safe and effective. Through a modification the project life cycle inside the company, the new agile management models are incorporated in the selected areas, teams or domains, permitting a gradual and controlled transition, and enabling further analyze the details above all in the early phases of the transformation. Once is selected the area or domain object of the transformation, a portfolio level analysis is performed, identifying those projects that meet a some conditions that allow them to be managed using agile management models. For that, a decision matrix is proposed with the principal variables to have into account at the time of decision making. Once the management model is selected using the decision matrix and it is agreed with the different stakeholders, a group of tools and metrics associated with the agile management projects are proposed to provide a regular visibility of the project progress, risks, contingency plans and problems, with proper alerts and escalations. Besides the group of tools and metrics proposed for agile project management, the necessary modifications over the traditional contract models and a new contract model are proposed: the Agile Contract. The main difference between this new contract model and the traditional ones is that, as the agile methodologies, it is executed in segments or iterations. To sum up, the objective of this document is to provide a mechanism that facilitates the inclusion of new agile management models in big companies, with a controlled transition and proposing adapted tools and metrics to have a full visibility over the project in all the phases of the project life cycle.
Resumo:
This article shows how a very small company has tailored Scrum according to its own needs. The main additions made were the “sprint design” phase and the “sprint test” phase. Before the sprint 0, the requirements elicitation and the functional specification were made in order to meet deadlines and costs agreed with clients. Besides, the introduction of an agile project management tool has supported all the process and it is considered the main success factor for the institutionalization of the Scrum process.
Resumo:
This paper reports a learning experience related to the acquisition of project management competences. Students from three different universities and backgrounds, cooperate in a common project that drives the learning-teaching process. Previous related works on this initiative have already evaluated the goodness of this multidisciplinary, project-based learning approach in the context of a new educative paradigm. Yet the innovative experience has allowed the authors to define a rubric in order to measure specific competences in project management. The study shows the rubric’s main aspects as well as competence acquisition evaluation alternatives, based in the metrics defined. Key indicators and specific reports obtained from data base fields in the web tool will support this work. As a result, new competences can be assessed, such ones like teamwork, problem solving, communication and leadership. Final goal is to provide an overall competence map to the students at the same time they improve their skills.
Resumo:
Experiences relating to the InternationalMasters in Rural Development from the Technical University of Madrid (Universidad Politécnica de Madrid, UPM), the first Spanish programme to receive a mention as a Registered Education Programme by InternationalProject Management Association (IPMA) are considered. Backed by an educational strategy based on Project-Based Learning dating back twenty years, this programme has managed to adapt to the competence evaluation requirements proposed by the European Space for Higher Education (ESHE). In order to do this the training is linked to the professional qualification using competences as a reference leading to the qualification in project management as established by the IPMA.
Resumo:
En este trabajo se comparan las codificaciones de competencias del Plan de estudios de CDIO (Conceive, Desing, Implement and Operate systems in the enterprise and societal context) con las definidas por el Proyecto Tuning y las de IPMA (International Project Management Asociation). También se determina el tipo de aprendizaje más apropiado para lograr la adquisición de competencias en la formación de los ingenieros y se revisa la evolución de los programas de ingeniería industrial en Perú, España y EE.UU para definir las competencias específicas aplicables al caso peruano. La codificación de CDIO responde a los estándares de acreditación de ABET (Accreditation Board for Engineering and Technology) y las competencias del Proyecto Tuning son las definidas para Latinoamérica. Se comparan las competencias definidas en los estándares de acreditación ABET en el ámbito de las ingenierías, con las competencias internacionales según el modelo IPMA. Los resultados evidencian la necesidad de aplicar modelos holísticos que abarquen competencias técnicas, contextuales y de comportamiento en los planes de estudio de ingeniería, su pertinencia para la definición de programas de ingeniería en Latinoamérica y la posibilidad de definir un plan de estudios de ingeniería industrial con una estrategia de aprendizaje apropiada.